permeability enhancement
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 106)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 119 (3) ◽  
pp. e2110776118
Author(s):  
Masaoki Uno ◽  
Kodai Koyanagawa ◽  
Hisamu Kasahara ◽  
Atsushi Okamoto ◽  
Noriyoshi Tsuchiya

Hydration and carbonation reactions within the Earth cause an increase in solid volume by up to several tens of vol%, which can induce stress and rock fracture. Observations of naturally hydrated and carbonated peridotite suggest that permeability and fluid flow are enhanced by reaction-induced fracturing. However, permeability enhancement during solid-volume–increasing reactions has not been achieved in the laboratory, and the mechanisms of reaction-accelerated fluid flow remain largely unknown. Here, we present experimental evidence of significant permeability enhancement by volume-increasing reactions under confining pressure. The hydromechanical behavior of hydration of sintered periclase [MgO + H2O → Mg(OH)2] depends mainly on the initial pore-fluid connectivity. Permeability increased by three orders of magnitude for low-connectivity samples, whereas it decreased by two orders of magnitude for high-connectivity samples. Permeability enhancement was caused by hierarchical fracturing of the reacting materials, whereas a decrease was associated with homogeneous pore clogging by the reaction products. These behaviors suggest that the fluid flow rate, relative to reaction rate, is the main control on hydromechanical evolution during volume-increasing reactions. We suggest that an extremely high reaction rate and low pore-fluid connectivity lead to local stress perturbations and are essential for reaction-induced fracturing and accelerated fluid flow during hydration/carbonation.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Katja E. Schulz ◽  
Kristian Bär ◽  
Ingo Sass

A hydrothermal doublet system was drilled in a fault-related granitic reservoir in Cornwall. It targets the Porthtowan Fault Zone (PTF), which transects the Carnmenellis granite, one of the onshore plutons of the Cornubian Batholith in SW England. At 5058 m depth (TVD, 5275 m MD) up to 190 °C were reached in the dedicated production well. The injection well is aligned vertically above the production well and reaches a depth of 2393 m MD. As part of the design process for potential chemical stimulation of the open-hole sections of the hydrothermal doublet, lab-scale acidification experiments were performed on outcrop analogue samples from the Cornubian Batholith, which include mineralised veins. The experimental setup comprised autoclave experiments on sample powder and plugs, and core flooding tests on sample plugs to investigate to what degree the permeability of natural and artificial (saw-cut) fractures can be enhanced. All samples were petrologically and petrophysically analysed before and after the acidification experiments to track all changes resulting from the acidification. Based on the comparison of the mineralogical composition of the OAS samples with the drill cuttings from the production well, the results can be transferred to the hydrothermally altered zones around the faults and fractures of the PTF. Core Flooding Tests and Autoclave Experiments result in permeability enhancement factors of 4 to >20 and 0.1 to 40, respectively. Mineral reprecipitation can be avoided in the stimulated samples by sufficient post-flushing.


Author(s):  
Jamal Ali Ashoor ◽  
Jinan M. Mohsin ◽  
Hussein Mohammed Mohsin ◽  
Basam W. Mahde ◽  
Mowafaq M. Gareeb

Abstract Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.Methotrexate penetration alone without enhancer is only about 20%, while using enhancers reach to 85%, 99% and 90% with eucalyptus oil 4%, peppermint oil 4% and olive oil 4% respectively after 24 hours.Conclusion: Methotrexate transdermal gel was prepared and evaluated fruitfully in-vitro with a good permeation across semipermeable membrane. The results indicated that using of peppermint oil as enhancer have superiority to enhance the transdermal permeation of the Methotrexate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudio Petrini ◽  
Claudio Madonna ◽  
Taras Gerya

AbstractFluid flow through crustal rocks is controlled by permeability. Underground fluid flow is crucial in many geotechnical endeavors, such as CO2 sequestration, geothermal energy, and oil and gas recovery. Pervasive fluid flow and pore fluid pressure control the strength of a rock and affect seismicity in tectonic and geotechnical settings. Despite its relevance, the evolution of permeability with changing temperature and during deformation remains elusive. In this study, the permeability of Westerly granite at an effective pressure of 100 MPa was measured under conditions near its brittle–ductile transition, between 650 °C and 850 °C, with a strain rate on the order of 2·10–6 s−1. To capture the evolution of permeability with increasing axial strain, the samples were continuously deformed in a Paterson gas-medium triaxial apparatus. The microstructures of the rock were studied after testing. The experiments reveal an inversion in the permeability evolution: an initial decrease in permeability due to compaction and then an increase in permeability shortly before and immediately after failure. The increase in permeability after failure, also present at high temperatures, is attributed to the creation of interconnected fluid pathways along the induced fractures. This systematic increase demonstrates the subordinate role that temperature dilatancy plays in permeability control compared to stress and its related deformation. These new experimental results thus demonstrate that permeability enhancement under brittle–ductile conditions unveils the potential for EGS exploitation in high-temperature rocks.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Zhongshun Chen ◽  
Yong Yuan ◽  
Wenmiao Wang ◽  
Cheng Zhu ◽  
Zhenghan Qin ◽  
...  

Abstract Coal seams are generally characterized by high pressure, low permeability, and strong adsorption in China. Moreover, carbon dioxide phase transition blasting (CDPTB) is an effective way to achieve pressure relief and permeability enhancement in high-gas pressure coal seams. Multiple fractures can be created in the coal body by CDPTB due to its characteristics of having a great impact stress and high energy efficiency. To determine the dual characteristics of coal fracturing and seepage after CDPTB, this paper developed a fluid solid coupling programme based on CDPTB cracking and permeability enhancement, which unifies the fracture and seepage of CDPTB. FLAC was used to determine the distribution characteristics of the stresses and fractures caused by CDPTB. The results showed fracture propagation from the initial fracture to multiple additional fractures or the main fractures over time. Then, the fractures were introduced into COMSOL software to simulate the characteristics of the gas flow field. The main fracture forms an effective channel for gas flow, which greatly reduces the gas pressure in coal. The successful application of CDPTB in the field induced the increase in the gas drainage effect by 10-20 times.


2021 ◽  
Vol 79 ◽  
pp. 105790
Author(s):  
Renjie Song ◽  
Chunbing Zhang ◽  
Fengmeng Teng ◽  
Juan Tu ◽  
Xiasheng Guo ◽  
...  

Author(s):  
Changbao Jiang ◽  
Wei Yang ◽  
Minke Duan ◽  
Guangqi Wang ◽  
Zhiyang Xu

Sign in / Sign up

Export Citation Format

Share Document