scholarly journals Atmospheric electrical effects during a strong explosive eruption of Bezymyanniy volcano (Kamchatka Peninsula, Russia) on December 20, 2017

2021 ◽  
Vol 840 (1) ◽  
pp. 012020
Author(s):  
P P Firstov ◽  
R R Akbashev ◽  
E I Malkin ◽  
N V Cherneva ◽  
G I Druzhin
2021 ◽  
Vol 9 ◽  
Author(s):  
Alina V. Shevchenko ◽  
Viktor N. Dvigalo ◽  
Edgar U. Zorn ◽  
Magdalena S. Vassileva ◽  
Francesco Massimetti ◽  
...  

Dome-building volcanoes often develop by intrusion and extrusion, recurrent destabilization and sector collapses, and renewed volcanic growth inside the collapse embayment. However, details of the structural architecture affiliated with renewed volcanic activity and the influences of regional structures remain poorly understood. Here, we analyze the recent activity of Shiveluch volcano, Kamchatka Peninsula, characterized by repeated episodes of lava dome growth and destruction due to large explosions and gravity-driven collapses. We collect and process a multisensor dataset comprising high-resolution optical (aerial and tri-stereo Pleiades satellite), radar (TerraSAR-X and TanDEM-X satellites), and thermal (aerial and MODIS, Sentinel-2, and Landsat 8 satellites) data. We investigate the evolution of the 2018–2019 eruption episode and evaluate the morphological and structural changes that led to the August 29, 2019 explosive eruption and partial dome collapse. Our results show that a new massive lava lobe gradually extruded onto the SW flank of the dome, concurrent with magmatic intrusion into the eastern dome sector, adding 0.15 km3 to the lava dome complex. As the amphitheater infilled, new eruption craters emerged along a SW-NE alignment close to the amphitheater rim. Then, the large August 29, 2019 explosive eruption occurred, followed by partial dome collapse, which was initially directed away from this SW-NE trend. The eruption and collapse removed 0.11 km3 of the dome edifice and led to the formation of a new central SW-NE-elongated crater with dimensions of 430 m × 490 m, a collapse scar at the eastern part of the dome, and pyroclastic density currents that traveled ∼12 km downslope. This work sheds light on the structural architecture dominated by a SW-NE lineament and the complex interplay of volcano constructive and destructive processes. We develop a conceptual model emphasizing the relevance of structural trends, namely, 1) a SW-NE-oriented (possibly regional) structure and 2) the infilled amphitheater and its decollement surface, both of which are vital for understanding the directions of growth and collapse and for assessing the potential hazards at both Shiveluch and dome-building volcanoes elsewhere.


Author(s):  
Hiroyuki Kumagai ◽  
Pablo Placios ◽  
Mario Ruiz ◽  
Hugo Yepes ◽  
Tomofumi Kozono

2019 ◽  
Vol 53 (1) ◽  
pp. 107-142 ◽  
Author(s):  
D. E. Himelbrant ◽  
I. S. Stepanchikova ◽  
T. Ahti ◽  
V. Yu. Neshataeva

The first lichenological inventory in Koryakia has resulted in the list of 315 species reported from Parapolsky Dale, within and in vicinities of the Koryak State Reserve. Altogether 46 species are published from the Kamchatka Territory for the first time, including Lecanographa grumulosa new to Russia, East Asia and Beringia; Cercidospora trypetheliza, Lecania dubitans, Pertusaria borealis, Piccolia ochrophora, Protoparmelia cupreobadia, Rimularia badioatra and Strangospora moriformis new to Russian Far East; Abrothallus bertianus, Cladonia strepsilis, Physciella melanchra, Rimularia badioatra, Sclerococcum parasiticum, Sphinctrina leucopoda and Strangospora moriformis new to Beringia. The lichen diversity of the study area is relatively poor due to natural reasons. Comparison with neighboring regions (Kamchatka Peninsula, Chukotka, Magadan Region, Yakutia and Alaska) shows that the lichen flora of Parapolsky Dale contains almost no specific species. The majority of the species recorded here are also known from neighboring regions, especially Alaska and Kamchatka Peninsula.


2011 ◽  
Vol 45 ◽  
pp. 150-158 ◽  
Author(s):  
D. E. Himelbrant ◽  
I. S. Stepanchikova

The fir (Abies gracilis) grove (Kamchatka Peninsula, Kronotsky State Nature Reserve) is a unique area for the northern part of the Russian Far East. As a result of revision of herbarium specimens and literature data a list of lichens of the fir grove was compiled, comprising 55 species. Of them, 27 species are new to the Kronotsky Reserve, 30 are firstly reported for the grove. Altogether 36 lichen epiphytes of Abies gracilis are known.


2010 ◽  
Vol 44 ◽  
pp. 357-372
Author(s):  
I. V. Czernyadjeva

The mosses of "Coast Chubuka Reserve" (South Kamchatka, Far East) were studied. Moss flora of reserve includes 141 species, 1 subspecies and 1 variety. 3 taxa — new for Kamchatka Peninsula. Annotated check-list includes species frequency, ecology and phytocoenology. The short analysis of moss flora is provided.


1997 ◽  
Vol 47 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Olga A. Braitseva ◽  
Vera V. Ponomareva ◽  
Leopold D. Sulerzhitsky ◽  
Ivan V. Melekestsev ◽  
John Bailey

Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.


Sign in / Sign up

Export Citation Format

Share Document