scholarly journals Biodegradation of surimi processing and crab canning wastewater using indigenous bacteria consortium

2021 ◽  
Vol 860 (1) ◽  
pp. 012075
Author(s):  
D A Oktavia ◽  
R N Sari ◽  
D L Ayudiarti ◽  
S Wibowo
Keyword(s):  
2018 ◽  
Author(s):  
Ryan Ordung ◽  
◽  
Gary A. Robbins ◽  
Kendra Maas ◽  
Mark Higgins

2021 ◽  
Vol 161 ◽  
pp. 105249
Author(s):  
Muhammad Wahab Yasir ◽  
Staci L. Capozzi ◽  
Birthe Veno Kjellerup ◽  
Shahid Mahmood ◽  
Tariq Mahmood ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 295
Author(s):  
Bong-Ju Kim ◽  
Yong-Kwon Koh ◽  
Jang-Soon Kwon

The microbially mediated recovery of valuable metals contained in mining waste presents an economical alternative to conventional hydrometallurgical processes. In order to investigate the effect of bacterial adaptation and biological oxidation on bioleaching, the microbially mediated bioleaching of a pyrrhotite sample from mine waste, with indigenous bacteria existing in acid mine drainage, was studied. The indigenous bacteria were sub-cultured repeatedly for iron adaptation, and Acidithiobacillus ferrooxidans was identified as the dominant member of the microbial consortium. The point of zero charge (PZC) of pyrrhotite sampled from mine waste was determined as 3.0. The performance of bioleaching by contact and non-contact biological oxidation was compared by conducting bioleaching under different initial pH (pHini) conditions (2.8 and 3.2). Negatively charged bacteria could be attached onto the pyrrhotite, which has a positive surface charge at lower pHini (2.8) than the PZC (3.0). Bacteria attachment and corrosion pits on the surface of the pyrrhotite residues were observed at pHini of 2.8. Under bacteria-adapted conditions, the leaching concentration of Fe (44.2 mg/L) at pHini of 2.8 was 2.1 times greater than that (21.3 mg/L) at pHini of 3.2. Under non-adapted bacteria conditions, the extent of Fe leaching was not significantly different between the pHini of 2.8 and 3.2. This could be attributed to the fact that the adapted bacteria could more easily attach onto the pyrrhotite surfaces at pHini 2.8, allowing contact biological oxidation during the bioleaching experiments. We demonstrate here that the bioleaching of pyrrhotite could increase Fe recovery through bacterial adaptation and contact biological oxidation.


2021 ◽  
Vol 782 (4) ◽  
pp. 042010
Author(s):  
A F Dewinta ◽  
Y A Wahyudi ◽  
R Y Pratama ◽  
I E Susetya ◽  
R F Siregar ◽  
...  

2021 ◽  
Vol 4 ◽  
pp. 295-300
Author(s):  
Saori Nakamura ◽  
Takashi Kuda ◽  
Yuko Midorikawa ◽  
Hajime Takahashi ◽  
Bon Kimura

1973 ◽  
Vol 51 (2) ◽  
pp. 498-500 ◽  
Author(s):  
Donald M. Knutson

Bacteria (Erwinia, Bacillus) were consistently isolated from all samples of aspen sapwood and heartwood. In wetwood zones (water-soaked xylem tissue) or discolored heartwood, large populations often occur. No organisms unique to wetwood were isolated. Wetwood probably is formed by nonmicrobial means and, once formed, merely supports large populations of indigenous bacteria.


2019 ◽  
Vol 99 (5) ◽  
pp. 1033-1039
Author(s):  
Madoka Ohji ◽  
Hiroya Harino ◽  
William John Langston

AbstractThe susceptibility of marine bacterial communities to copper pyrithione (CuPT2), zinc pyrithione (ZnPT2) and their degradation product is described and toxicities of these relatively new antifouling biocides compared with those of their harmful organotin (OT) predecessors, tributyltin (TBT) and triphenyltin (TPT). These biocides were added to agar at concentrations of 0, 0.01, 0.1, 1 and 10 mg l−1and coastal seawater including indigenous bacteria added to each batch of agar solution. The number of bacterial colony forming units (CFU) was measured after 7 days culture. Relative CFU (as a percentage of control) was more than 80% at a concentration of 0.01 mg l−1of each compound, except for TBT. Relative CFU decreased as a function of dose of each biocide, although concentration-dependent changes in rate of CFU were relatively low during exposure to degradation products of CuPT2and ZnPT2, pyridineN-oxide (PO) and pyridine-2-sulphonic acid (PSA). Based on comparisons of EC50, TBT was the most bacterio-toxic of the tested compounds (0.2 mg l−1), marginally more so than CuPT2(0.3 mg l−1). Interestingly, EC50values of degradation products of CuPT2and ZnPT2, 2-mercaptopyridineN-oxide (HPT) and 2,2′-dithio-bispyridineN-oxide (PT2) were 0.8 and 0.5 mg l−1, respectively, lower than that of the parent chemical, ZnPT2(1.4 mg l−1). The EC50of PT2was also lower than that of TPT (0.7 mg l−1), implying higher toxicity. Given the overlapping toxicity ranges, these results suggest that marine bacterial communities experience comparably high susceptibility to metal PTs and OTs during their life history.


1971 ◽  
Vol 17 (11) ◽  
pp. 1471-1473 ◽  
Author(s):  
Stitaya Sirisinha ◽  
Chinda Charupatana

The nature of serum, secretory, and urinary antibodies reactive with indigenous bacteria was investigated. The immunoglobulin class of serum antibodies to Streptococcus mitis, Streptococcus salivarius, an enterococcus, Veillonella, and Escherichia coli was different from that of the parotid secretion, whole saliva, and urine of the same normal subject. While serum antibodies to these bacteria were primarily of the IgM class, those of the secretions and urine were associated almost exclusively with the secretory IgA and IgG immunoglobulins, respectively. These results suggest that secretory and urinary antibodies are synthesized independently of serum antibodies.


Sign in / Sign up

Export Citation Format

Share Document