scholarly journals Investigation on axial-lateral-torsion nonlinear coupling vibration characteristic of drilling string in ultra-HPHT curved wells

2021 ◽  
Vol 861 (5) ◽  
pp. 052050
Author(s):  
X Q Guo ◽  
J Liu ◽  
J X Wang ◽  
L M Dai
2021 ◽  
Author(s):  
Xiaoqiang Guo ◽  
Jun Liu ◽  
Jianxun Wang ◽  
Haiyan Zhu

Abstract In view of the vibration failure of drilling string system in ultra-high temperature and high pressure (ultra-HPHT) curved wells, an axial-lateral-torsion coupling (ALTC) nonlinear vibration model of drilling string system was established using energy method and Hamiltonian principle, in which, the influence of wellbore trajectory change, wellbore constraint, interaction between bit and rock and ultra-HPHT of wellbore on elastic modulus and viscosity of drilling fluid were taken into account. The finite element method (FEM) is used to realize the numerical solution of the nonlinear vibration model. The correctness and validity of the ALTC nonlinear vibration model was verified by comparing the measured data of four ultra-HPHT wells with the theoretical calculation results of the proposed model. The research results provide a theoretically sound guidance for designing and practically sound approach for effectively improving rate of penetration (ROP) and the service life of drilling string in ultra-HPHT curved wells.


2018 ◽  
Vol 8 (11) ◽  
pp. 2064
Author(s):  
Zhihao Liu ◽  
Qinhe Gao ◽  
Hailong Niu

This paper investigates the planar vibration characteristic of heavy load radial tires with a large flat ratio. A proposed tire model with a flexible ring on an elastic continuous foundation is investigated utilizing kinematic modeling and experimental modal analysis. Planar coupling deformation of the radial and tangential direction is considered to enrich the kinematic characteristic of the flexible belt and the continuous sidewall; a flexible ring on an elastic continuous foundation tire model is proposed to investigate the coupling vibration characteristic between the flexible belt and the continuous sidewall. In-extensibility assumption is utilized to simplify the proposed tire model and the planar vibration modal features of the heavy load radial tire are discussed. The variation of the inflation pressure on the radial and tangential stiffness of the sidewall spring model is enriched into the flexible ring on an elastic continuous foundation tire model to extend the modal prediction of the tires with a different inflation pressure. Taking the relative error between the experimental and analytical modal resonance frequency of the tested tire with a different inflation pressure as the object value, structural parameters of the proposed tire model are identified by a backward genetic algorithm. Experimental and theoretical results show that: the planar coupling vibration characteristic of the heavy load radial tire can be predicted precisely with the flexible ring on an elastic continuous foundation tire model; meanwhile, considering the linear variations of the radial and tangential sidewall stiffness due to the inflation pressure, the proposed tire model can be extended to analyze the vibration characteristic of the heavy load radial tire with a different inflation pressure.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Hao Zhang ◽  
Yue Li ◽  
Cheng-Qiang Zong ◽  
Chuan-Jin Ou ◽  
Bing-Tao Li
Keyword(s):  

2012 ◽  
Vol 57 (3) ◽  
pp. 601-618 ◽  
Author(s):  
Vasyl Moisyshyn ◽  
Vasyl Yacyshyn ◽  
Oleg Vytyaz

Abstract Studied here are the results of the asymmetric problem solution of the thick walled circular cylinder elasticity using the spatial characteristics technique. The practical implementation of the solution of the problem is based on the calculation of the stress-caused deformation state of the stuck drilling string zone affected by the explosion wave action upon the inner wall of the pipe. Suggested here is the technique for determining axual σz and circular σθ stress on the drill pipe wall as well as the radial displacements ur of the stuck drill pipe outer surface under the action of the explosion shock wave. The above technique enables to make a sound selection of the cylindrical explosive charge weight in order to avoid the residual strain during the drilling string shaping off and uncoupling the threaded joints or to prevent them from exceeding the admissible level.


Author(s):  
I. A. Khodasevich ◽  
A. S. Grabtchikov ◽  
M. V. Korolkov ◽  
D. S. Mogilevtsev ◽  
E. V. Kolobkova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document