scholarly journals Direct hydrocarbon detection (DHI) techniques for prospective exploration targets in Chaoshan Depression

2021 ◽  
Vol 865 (1) ◽  
pp. 012017
Author(s):  
Guangjian Zhong ◽  
Renqi Jiang ◽  
Hai Yi ◽  
Jincai Wu ◽  
John Castagna ◽  
...  
2012 ◽  
Vol 472-475 ◽  
pp. 178-182
Author(s):  
Zhi Ming Li ◽  
Xue Yan Hu ◽  
Ling Xia Zhen

Based on the Biot theory and laboratory data, engineers of LandOcean recently develop a certain technology for hydrocarbon detection in multi-phase medium in order to reduce ambiguity and uncertainty. The sensitivity of the technology is superior to others especially in carbonate pores and cave detection, igneous hydrocarbon prediction and fluid detection of non-well areas. A number of projects and wells drilling proved that this technology is effective and reliable.


Author(s):  
R. Peter Weaver ◽  
Dan Katz ◽  
Tushar Prabahakar ◽  
Katie A. Corcoran

Abstract We are now living in what has been described as the Experience Era, where lines between the digital and physical are increasingly blurred. As such, we are just beginning to see how customized access to space will improve asset stewardship in ways that are still evolving, as customization of on-orbit technology pushes the bounds of how we receive and process information. Specific to oil and gas operators, one technology being launched by microsatellite, hyperspectral imagery (HSI), is poised to enable unparalleled daily global pipeline leak prevention, detection and speciation, intrusion and change detection capabilities. This will replace conventional DOT pipeline patrol for compliance while contributing to our understanding of vapor emissions as regulated by the Environmental Protection Agency. This paper discusses both the evolving space marketplace and the state of the art for HSI, including current examples of hyperspectral findings regarding pipeline and terminal leaks. Successful deployment of HSI will drive a decrease in the number and magnitude of pipeline leaks using persistent, global, high-resolution data collection, rapid and reliable analysis, and immediate reporting of actionable information. For decades, satellite HSI technology has offered a promise of remote hydrocarbon detection and other features of interest. It is only now becoming scalable, accessible to, and cost-effective for the pipeline industry, and thus a reality for cost-effective pipeline stewardship.


Sign in / Sign up

Export Citation Format

Share Document