scholarly journals Preliminary modeling for module estimation on the underground coal gasification project

2021 ◽  
Vol 882 (1) ◽  
pp. 012041
Author(s):  
Zulfahmi ◽  
M Huda ◽  
B Sirait ◽  
A Maulana ◽  
A Lubis

Abstract Designing the module is one of the initial works of the underground coal gasification (UCG) feasibility study, consisting of the coal area to be gasified as panels and the coal to be left as pillars. Three models have been designed with each panel dimension 380 m in length, 150 m in width and 18 m thick. The finite element method is used in the study and the 2D and 3D geotechnical simulations have been carried out with variations of the pillars. As a result of 2D modeling, the critical strength reduction factor (SRF) is 0.25 with the highest deformation on the surface is 0.04 m (SMA-C) and 0.03 (SM-D) if the pillar is 50 m width. If SRF is increased to 0.37, the deformation on the surface is 0.36 (SMA-C) and is 13.5 (SM-D), respectively. From the 3D modeling results, if it is assumed that the velocity of the UCG reactor hole rate is 0.24 m/day until it reaches the final target length of the reactor hole 380 m, the maximum deformation of the soil surface at the SMA-C and SM-D locations is 0.074 m and 0.096 m, respectively. Determination of the module is important in the feasibility study and evaluation of the UCG site.

Author(s):  
Amir Noorizadegan ◽  
Der Liang Young ◽  
Chuin-Shan Chen

The local radial basis function collocation method (LRBFCM), a strong-form formulation of the meshless numerical method, is proposed for solving piezoelectric medium problems. The proposed numerical algorithm is based on the local Kansa method using variable shape parameter. We introduce a novel technique for the determination of shape parameter in the LRBFCM, which leads to greater accuracy, and simplicity. The implemented algorithm is first verified with a 2D Poisson equation. Then, we employed LRBFCM in a numerical simulation for 2D and 3D piezoelectric problems involving mutual coupling of the electric field and elastodynamic equations for mechanical field. The presented meshless method is verified using corresponding results obtained from the finite element method and moving least squares meshless local Petrov–Galerkin method. In particular, the 2D piezoelectric problem is verified with an exact solution.


2013 ◽  
Vol 12 (3) ◽  
pp. 8-16 ◽  
Author(s):  
Volodymyr S. Falshtynskyi ◽  
Roman O. Dychkovskyi ◽  
Vasyl G. Lozynskyi ◽  
Pavlo B. Saik

2016 ◽  
Vol 21 (1-2) ◽  
pp. 107-116
Author(s):  
Malwina Cykowska ◽  
Małgorzata Bebek ◽  
Aleksandra Strugała-Wilczek

AbstractA flow injection analysis method for spectrophotometric determination of ammonium in waters produced during underground coal gasification (UCG) of lignite and hard coal was described. The analysis of UCG water samples is very difficult because of their very complicated matrix and colour. Due to a huge content of organic and inorganic substances and intensive colour of samples (sometimes yellow, quite often dark brown or even black), most analytical methods are not suitable for practical application. Flow injection analysis (FIA) is based on diffusion of ammonia through a hydrophobic gas permeable membrane from an alkaline solution stream into an acid-base indicator solution stream. Diffused ammonia causes a colour change of indicator solution, and ammonia is subsequently quantified spectrophotometrically at 590 nm wavelength. The reliability of the results provided by applied method was evaluated by checking validation parameters like accuracy and precision. Accuracy was evaluated by recovery studies using multiple standard addition method. Precision as repeatability was expressed as a coefficient of variation (CV).


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Volodymyr S. Falshtynskyi ◽  
Roman O. Dychkovskyi ◽  
Vasyl G. Lozynskyi ◽  
Pavlo B. Saik

1987 ◽  
Vol 109 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Eed A. A. Abdel-Hadi ◽  
T. R. Hsu

A two-dimensional computational model has been developed as a pilot study for the multidimensional simulation of fixed bed underground coal gasification (UCG). The analysis is based on the finite element method and incorporates a moving boundary algorithm to model the permeation linked vertical well in a forward gasification mode. In order to account for the motion of the combustion front with time, an immobilization transformation of coordinates technique is introduced in the finite element formulation. A numerical case study is included to illustrate the capability of the model. Predictions on temperatures, gas composition, pressure, and coal consumption in space and time are possible by using this model.


1994 ◽  
Vol 110 (3) ◽  
pp. 240-244
Author(s):  
Sohei SHIMADA ◽  
Akira TAMARI ◽  
Eiji ISHII

Sign in / Sign up

Export Citation Format

Share Document