scholarly journals Performance of probabilistic forecast of the onset of the rainy season over Java Island based on the application of Constructed Analogue (CA) method on Climate Forecast System Version 2 (CFSV2) model output

2021 ◽  
Vol 893 (1) ◽  
pp. 012037
Author(s):  
F Lubis ◽  
I J A Saragih

Abstract The onset of the rainy season is one of the forecast products that is issued regularly by the Indonesian Agency of Meteorology, Climatology, and Geophysics (BMKG), with deterministic information about the month of which the initial 10-days (dasarian) of the rainy season will occur in each a designated area. On the other hand, state-of-the-art of seasonal forecasting methods suggests that probabilistic forecast products are potentially better for decision making. The probabilistic forecast is also more suitable for Indonesia because of the large rainfall variability that adds up to uncertainty in climate model simulations, besides complex geographical factors. The research aims to determine the onset of rainy season and monsoon over Java Island based on rainfall prediction by Constructed Analogue statistical downscaling of CFSv2 (Climate Forecast System version 2) model output. This research attempted to develop a method to produce a probabilistic forecast of the onset of the rainy season, as well as monsoon onset, by utilizing the freely available seasonal model output of CFSv2 operated by the US National Oceanic and Atmospheric Administration (NOAA). In this case, the output of the global model is dynamically downscaled using the modified Constructed Analogue (CA) method with an observational rainfall database from 26 BMKG stations and TRMM 3B43 gridded dataset. This method was then applied to perform hindcast using CFS-R (re-forecast) for the 2011-2014 period. The results show that downscaled CFS predictions with initial data in September (lead-1) give sufficient accuracy, while that initialized in August (lead-2) have large errors for both onsets of the rainy season and monsoon. Further analysis of forecast skill using the Brier score indicates that the CA scheme used in this study showed good performance in predicting the onset of the rainy season with a skill score in the range of 0.2. The probabilistic skill scores indicate that the prediction for East Java is better than the West- and Central-Java regions. It is also found that the results of CA downscaling can capture year-to-year variations, including delays in the onset of the rainy season.

2018 ◽  
Vol 33 (3) ◽  
pp. 615-640 ◽  
Author(s):  
Tan Phan-Van ◽  
Thanh Nguyen-Xuan ◽  
Hiep Van Nguyen ◽  
Patrick Laux ◽  
Ha Pham-Thanh ◽  
...  

Abstract This study investigates the ability to apply National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) products and their downscaling by using the Regional Climate Model version 4.2 (RegCM4.2) on seasonal rainfall forecasts over Vietnam. First, the CFS hindcasts (CFS_Rfc) from 1982 to 2009 are used to assess the ability of the CFS to predict the overall circulation and precipitation patterns at forecast lead times of up to 6 months. Second, the operational CFS forecasts (CFS_Ope) and its RegCM4.2 downscaling (RegCM_CFS) for the period 2012–14 are used to derive seasonal rainfall forecasts over Vietnam. The CFS_Rfc and CFS_Ope are validated against the ECMWF interim reanalysis, the Global Precipitation Climatology Centre (GPCC) analyzed rainfall, and observations from 150 meteorological stations across Vietnam. The results show that the CFS_Rfc can capture the seasonal variability of the Asian monsoon circulation and rainfall distribution. The higher-resolution RegCM_CFS product is advantageous over the raw CFS in specific climatic subregions during the transitional, dry, and rainy seasons, particularly in the northern part of Vietnam in January and in the country’s central highlands during July.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Emily Bosire ◽  
Franklin Opijah ◽  
Wilson Gitau

It is becoming increasingly important to be able to verify the skill of precipitation forecasts, especially with the advent of high-resolution numerical weather prediction models. This study focused on assessing the skill of climate forecast system (CFS) model in predicting rainfall on seasonal time scales over East Africa region for the period January 1981 to December 2009. The rainfall seasons considered were March to May (MAM) and October to December (OND). The data used in the study included the observed seasonal rainfall totals from January 1981 to December 2009 and CFS model forecast data for the same period. The model had 15 Runs. The measure of skill employed was the categorical skill scores and included Heidke skill scores, bias, probability of detection and false alarm ratio. The results from the categorical skill scores confirmed relatively higher skills during OND season as compared to MAM. When compared with individual Runs, the mean of all the 15 Runs depicted relatively higher accuracy during OND season. Some individual Runs – 1, 7, 9 and 10 – also performed better during OND season. During MAM season, the mean of all the 15 Runs showed relatively lower accuracy in predicting rainfall. Some individual Runs – 5, 10, 12 and 14 – performed better than the mean of all the 15 Runs. The prediction of seasonal rainfall over East Africa region using CFS model depends on the season considered. During MAM, the prediction of seasonal rainfall is better as Runs are fewer, which showed relatively higher averaged skills; on the other hand, during OND the prediction of seasonal rainfall is better when using the mean of all the 15 Runs.


2013 ◽  
Vol 118 (3) ◽  
pp. 1312-1328 ◽  
Author(s):  
Xingwen Jiang ◽  
Song Yang ◽  
Yueqing Li ◽  
Arun Kumar ◽  
Wanqiu Wang ◽  
...  

2020 ◽  
Author(s):  
Kristina Fröhlich ◽  
Mikhail Dobrynin ◽  
Katharina Isensee ◽  
Claudia Gessner ◽  
Andreas Paxian ◽  
...  

2018 ◽  
Vol 18 (18) ◽  
pp. 13547-13579 ◽  
Author(s):  
Zachary D. Lawrence ◽  
Gloria L. Manney ◽  
Krzysztof Wargan

Abstract. We compare herein polar processing diagnostics derived from the four most recent “full-input” reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3 K at some levels in the SH (1.5 K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5 % of a hemisphere (0.75 % of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1 K in both hemispheres, and average APSC differences less than 0.3 % of a hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.


2013 ◽  
Vol 42 (7-8) ◽  
pp. 1925-1947 ◽  
Author(s):  
J. S. Chowdary ◽  
H. S. Chaudhari ◽  
C. Gnanaseelan ◽  
Anant Parekh ◽  
A. Suryachandra Rao ◽  
...  

2015 ◽  
Vol 143 (11) ◽  
pp. 4660-4677 ◽  
Author(s):  
Stephen G. Penny ◽  
David W. Behringer ◽  
James A. Carton ◽  
Eugenia Kalnay

Abstract Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR). The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.


Sign in / Sign up

Export Citation Format

Share Document