scholarly journals Experimental Investigation on Effect of Inclination Angle of a Flat Plate Solar Air Collector

2021 ◽  
Vol 945 (1) ◽  
pp. 012003
Author(s):  
K.S. Ong ◽  
K. Gobi ◽  
C. H. Lim ◽  
J.C. Tan ◽  
S. Naghavi ◽  
...  

Abstract This study investigates the effect of inclination angle of a flat plate solar air collector in Kampar, Malaysia. Flat plate solar air collectors have been investigated since the early 1950s for air heating and crop drying. Their performances under natural convection air cooling are very similar to a photovoltaic (PV) panels for power production. A PV panel becomes hot when operating under hot weather which will affect the efficiency and lifespan. The panel could be cooled down by providing an air duct underneath which allowing natural convection air circulating inside the duct. The degree of cooling would depend upon the angle of inclination of the panel. This paper presents some experimental results on the effect of inclination angle on the performance of a flat plate solar air collector under natural convection air cooling.

1974 ◽  
Vol 96 (4) ◽  
pp. 455-458 ◽  
Author(s):  
L. E. Wiles ◽  
J. R. Welty

An experimental investigation of laminar natural convection heat transfer from a uniformly heated vertical cylinder immersed in an effectively infinite pool of mercury is described. A correlation was developed for the local Nusselt number as a function of local modified Grashof number for each cylinder. A single equation incorporating the diameter-to-length ratio was formulated that satisfied the data for all three cylinders. An expression derived by extrapolation of the results to zero curvature (the flat plate condition) was found to agree favorably with others’ work, both analytical and experimental. The influence of curvature upon the heat transfer was found to be small but significant. It was established that the effective thermal resistance through the boundary layer is less for a cylinder of finite curvature than for a flat plate. Consequently, local heat transfer coefficients for cylinders are larger than those for flat plates operating under identical conditions.


Author(s):  
Assunta Andreozzi ◽  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini

In this paper an experimental investigation on natural convection in air in inclined channels with rectangular transversal section and lower wall heated at uniform heat flux is carried out. Wall temperature measurements and flow visualization are presented. The results allow investigating on the effect of the distance between the two principal parallel walls and of the inclination angle. The experiments are accomplished for two channel gap values: 20 and 40 mm. The inclination angle is equal to 80° and 88°. The flow development and the shape of flow transitions along the channel are visualized. Flow visualization allows to describe the secondary motion inside an inclined channel. Flow separation region along the lower heated plate begins at lower axial coordinate as the wall heat flux, the inclination angle and the channel gap are greater. The flow separation depends also on transversal coordinate. The detected secondary structures pass from thermals to plumes and vortices. Along the plane parallel to the heated wall, the visualization shows that thermal plumes split in V-shaped structures. For the largest considered channel gap value the instability phenomena in the channel are stronger and chaotic motion in the channel outlet zone is observed. When the channel gap value increases wall temperatures become lower because the higher distance between the walls determines a greater mass flow rate and an increase in the heat transfer.


2018 ◽  
Vol 24 (7) ◽  
pp. 19
Author(s):  
Maha Ali Hussein

An experimental investigation has been made to study the influence of using v-corrugated aluminum fin on heat transfer coefficient and heat dissipation in a heat sink. The geometry of fin is changed to investigate their performance. 27 circular perforations with 1 cm diameter were made. The holes designed into two ways, inline arrangement and staggered in the corrugated edges arrangement. The experiments were done in enclosure space under natural convection. Three different voltages supplied to the heat sink to study their effects on the fins performance. All the studied cases are compared with v-corrugated smooth solid fin. Each experiment was repeated two times to reduce the error and the data recorded after reaching the steady state conditions. The results showed that the v-corrugated fin dissipate heat twice and triple times than flat plate mentioned in past research with the same dimension. Also, the inline perforated fin gave higher enhancement percentage than solid one by 15, 32 and 36% for 110, 150 and 200 V voltages supplied. Finally, the staggered perforation arrangement gave the higher enhancement percentage with 22, 42 and 45% for the same voltages supply.  


Sign in / Sign up

Export Citation Format

Share Document