scholarly journals Vulnerability curves for masonry buildings affected by hyperconcentrated flows as natural disaster risk management tools for the quantification of material damage

2021 ◽  
Vol 958 (1) ◽  
pp. 012021
Author(s):  
A Jara ◽  
T Y Quispe ◽  
L F Castillo

Abstract The damage assessment caused by floods, earthquakes, hurricanes among others phenomenons in the world are analyzed with methodologies such as “Vulnerability curves”. In Peru, disasters caused by hyperconcentrated flows are alarming due to a climatic variability such as the “El Niño Costero” phenomenon. Therefore, this research has developed vulnerability curves for 1 and 2-story confined masonry buildings in Urb. San Idelfonso, Ica - Peru; linking the variables: flow depth, associated with the event produced by heavy rains at the top of the “Quebrada Cansas” caused by the “El Niño Costero” phenomenon in 2017, and the percentage of the damage based on the methodology of the United States Army Corps of Engineers (USACE), whose formula is the repair value and total building value. The monetary amounts and items of the buildings are obtained from the RM 415-2017-VIVIENDA of the Ministry of Housing, Construction and Sanitation of Peru. The process consisted of hydrological modeling in HEC-HMS, hydraulic modeling in FLO-2D, damage percentage estimate and vulnerability curves production. Finally, the vulnerability curves for hyperconcentrated flows were contrasted with similar studies regarding curves for flooding and debris flow. The results of the investigation showed that the “El Niño Costero” phenomenon in 2017 had an economic impact of at least 1.3 million soles in Urb. San Idelfonso. In addition, at least 24 buildings had a complete damage and 21 buildings an extensive damage.

2018 ◽  
Vol 32 (1) ◽  
pp. 161-182 ◽  
Author(s):  
Baoxiang Pan ◽  
Kuolin Hsu ◽  
Amir AghaKouchak ◽  
Soroosh Sorooshian ◽  
Wayne Higgins

Abstract Precipitation variability significantly influences the heavily populated West Coast of the United States, raising the need for reliable predictions. We investigate the region’s short- to extended-range precipitation prediction skill using the hindcast database of the Subseasonal-to-Seasonal Prediction Project (S2S). The prediction skill–lead time relationship is evaluated, using both deterministic and probabilistic skill scores. Results show that the S2S models display advantageous deterministic skill at week 1. For week 2, prediction is useful for the best-performing model, with a Pearson correlation coefficient larger than 0.6. Beyond week 2, predictions generally provide little useful deterministic skill. Sources of extended-range predictability are investigated, focusing on El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO). We found that periods of heavy precipitation associated with ENSO are more predictable at the extended range period. During El Niño years, Southern California tends to receive more precipitation in late winter, and most models show better extended-range prediction skill. On the contrary, during La Niña years Oregon tends to receive more precipitation in winter, with most models showing better extended-range skill. We believe the excessive precipitation and improved extended-range prediction skill are caused by the meridional shift of baroclinic systems as modulated by ENSO. Through examining precipitation anomalies conditioned on the MJO, we verified that active MJO events systematically modulate the area’s precipitation distribution. Our results show that most models do not represent the MJO or its associated teleconnections, especially at phases 3–4. However, some models exhibit enhanced extended-range prediction skills under active MJO conditions.


2013 ◽  
Vol 14 (1) ◽  
pp. 105-121 ◽  
Author(s):  
R. W. Higgins ◽  
V. E. Kousky

Abstract Changes in observed daily precipitation over the conterminous United States between two 30-yr periods (1950–79 and 1980–2009) are examined using a 60-yr daily precipitation analysis obtained from the Climate Prediction Center (CPC) Unified Raingauge Database. Several simple measures are used to characterize the changes, including mean, frequency, intensity, and return period. Seasonality is accounted for by examining each measure for four nonoverlapping seasons. The possible role of the El Niño–Southern Oscillation (ENSO) cycle as an explanation for differences between the two periods is also examined. There have been more light (1 mm ≤ P < 10 mm), moderate (10 mm ≤ P < 25 mm), and heavy (P ≥ 25 mm) daily precipitation events (P) in many regions of the country during the more recent 30-yr period with some of the largest and most spatially coherent increases over the Great Plains and lower Mississippi Valley during autumn and winter. Some regions, such as portions of the Southeast and the Pacific Northwest, have seen decreases, especially during the winter. Increases in multiday heavy precipitation events have been observed in the more recent period, especially over portions of the Great Plains, Great Lakes, and Northeast. These changes are associated with changes in the mean and frequency of daily precipitation during the more recent 30-yr period. Difference patterns are strongly related to the ENSO cycle and are consistent with the stronger El Niño events during the more recent 30-yr period. Return periods for both heavy and light daily precipitation events during 1950–79 are shorter during 1980–2009 at most locations, with some notable regional exceptions.


Author(s):  
Lino Naranjo Díaz

Almost all the studies performed during the past century have shown that drought is not the result of a single cause. Instead, it is the result of many factors varying in nature and scales. For this reason, researchers have been focusing their studies on the components of the climate system to explain a link between patterns (regional and global) of climatic variability and drought. Some drought patterns tend to recur frequently, particularly in the tropics. One such pattern is the El Niño and Southern Oscillation (ENSO). This chapter explains the main characteristics of the ENSO and its data forms, and how this phenomenon is related to the occurrence of drought in the world regions. Originally, the name El Niño was coined in the late 1800s by fishermen along the coast of Peru to refer to a seasonal invasion of south-flowing warm currents of the ocean that displaced the north-flowing cold currents in which they normally fished. The invasion of warm water disrupts both the marine food chain and the economies of coastal communities that are based on fishing and related industries. Because the phenomenon peaks around the Christmas season, the fishermen who first observed it named it “El Niño” (“the Christ Child”). In recent decades, scientists have recognized that El Niño is linked with other shifts in global weather patterns (Bjerknes, 1969; Wyrtki, 1975; Alexander, 1992; Trenberth, 1995; Nicholson and Kim, 1997). The recurring period of El Niño varies from two to seven years. The intensity and duration of the event vary too and are hard to predict. Typically, the duration of El Niño ranges from 14 to 22 months, but it can also be much longer or shorter. El Niño often begins early in the year and peaks in the following boreal winter. Although most El Niño events have many features in common, no two events are exactly the same. The presence of El Niño events during historical periods can be detected using climatic data interpreted from the tree ring analysis, sediment or ice cores, coral reef samples, and even historical accounts from early settlers.


Author(s):  
Stanley A. Changnon

El Niño 97-98 provided one of the most interesting and widely known climatic events of this century. It garnered enormous attention not only in the scientific community but also in the media and from the American public. El Niño developed rapidly in the tropical Pacific during May 1997, and by October “El Niño “had become a household phrase across America. Television and radio, newspapers and magazines pummeled America with the dire tales of El Niño during the fall of 1997 as the climate disruption battered the West Coast and the southern United States with storm after storm. Worried families changed vacation plans, and insurance executives pondered losses and raised rates. Victims of every type of severe weather blamed El Niño . After a winter filled with unusual weather, the head of the National Oceanic and Atmospheric Administration (NOAA) declared, “This winter’s El Niño ranks as one of the major climatic events of this century.” It was the first El Niño observed and forecast from start to finish. The event was noteworthy from several perspectives. • First, it became the largest and warmest El Niño to develop in the Pacific Ocean during the past 100 years. • Second, the news media gave great attention to the event, and El Niño received more attention at all levels than had any previous climate event. • Third, scientists were able to use El Niño conditions to successfully predict the climate conditions of the winter six months in advance. • Fourth, the predictive successes brought new credibility to the science of long-range prediction and, in general, acted to increase the public’s understanding of the climate and oceanic sciences. • Fifth, there were notable differences in how weather-sensitive decision makers reacted to the predictions, some used them for great gain, while others, fearing failure, did not. • Sixth, the great strength of El Niño brought forth claims that the phenomenon was the result of anthropogenic-induced global warming. This possibility was debated and added to the scientific-policy debates surrounding climate change. • Seventh, the net effect of the El Niño -influenced weather on the United States was an economic benefit, after early fears and predictions of great damages.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 282 ◽  
Author(s):  
Glenn McGregor ◽  
Kristie Ebi

The El Niño Southern Oscillation (ENSO) is an important mode of climatic variability that exerts a discernible impact on ecosystems and society through alterations in climate patterns. For this reason, ENSO has attracted much interest in the climate and health science community, with many analysts investigating ENSO health links through considering the degree of dependency of the incidence of a range of climate diseases on the occurrence of El Niño events. Because of the mounting interest in the relationship between ENSO as a major mode of climatic variability and health, this paper presents an overview of the basic characteristics of the ENSO phenomenon and its climate impacts, discusses the use of ENSO indices in climate and health research, and outlines the present understanding of ENSO health associations. Also touched upon are ENSO-based seasonal health forecasting and the possible impacts of climate change on ENSO and the implications this holds for future assessments of ENSO health associations. The review concludes that there is still some way to go before a thorough understanding of the association between ENSO and health is achieved, with a need to move beyond analyses undertaken through a purely statistical lens, with due acknowledgement that ENSO is a complex non-canonical phenomenon, and that simple ENSO health associations should not be expected.


Author(s):  
Swadhin Behera ◽  
Toshio Yamagata

The El Niño Modoki/La Niña Modoki (ENSO Modoki) is a newly acknowledged face of ocean-atmosphere coupled variability in the tropical Pacific Ocean. The oceanic and atmospheric conditions associated with the El Niño Modoki are different from that of canonical El Niño, which is extensively studied for its dynamics and worldwide impacts. A typical El Niño event is marked by a warm anomaly of sea surface temperature (SST) in the equatorial eastern Pacific. Because of the associated changes in the surface winds and the weakening of coastal upwelling, the coasts of South America suffer from widespread fish mortality during the event. Quite opposite of this characteristic change in the ocean condition, cold SST anomalies prevail in the eastern equatorial Pacific during the El Niño Modoki events, but with the warm anomalies intensified in the central Pacific. The boreal winter condition of 2004 is a typical example of such an event, when a tripole pattern is noticed in the SST anomalies; warm central Pacific flanked by cold eastern and western regions. The SST anomalies are coupled to a double cell in anomalous Walker circulation with rising motion in the central parts and sinking motion on both sides of the basin. This is again a different feature compared to the well-known single-cell anomalous Walker circulation during El Niños. La Niña Modoki is the opposite phase of the El Niño Modoki, when a cold central Pacific is flanked by warm anomalies on both sides.The Modoki events are seen to peak in both boreal summer and winter and hence are not seasonally phase-locked to a single seasonal cycle like El Niño/La Niña events. Because of this distinction in the seasonality, the teleconnection arising from these events will vary between the seasons as teleconnection path will vary depending on the prevailing seasonal mean conditions in the atmosphere. Moreover, the Modoki El Niño/La Niña impacts over regions such as the western coast of the United States, the Far East including Japan, Australia, and southern Africa, etc., are opposite to those of the canonical El Niño/La Niña. For example, the western coasts of the United States suffer from severe droughts during El Niño Modoki, whereas those regions are quite wet during El Niño. The influences of Modoki events are also seen in tropical cyclogenesis, stratosphere warming of the Southern Hemisphere, ocean primary productivity, river discharges, sea level variations, etc. A remarkable feature associated with Modoki events is the decadal flattening of the equatorial thermocline and weakening of zonal thermal gradient. The associated ocean-atmosphere conditions have caused frequent and persistent developments of Modoki events in recent decades.


2020 ◽  
Vol 37 (5) ◽  
pp. 346-364
Author(s):  
Muhammad Imran Azam ◽  
Jiali Guo ◽  
Xiaotao Shi ◽  
Muhammad Yaseen ◽  
Muhammad Tayyab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document