scholarly journals Three dimensional waves propagation in thermo-viscoelastic medium with two temperature and void

Author(s):  
K.D. Sharma ◽  
Rajneesh Kumar ◽  
Mohit Kumar Kakkar ◽  
Suniti Ghangas
2019 ◽  
Vol 5 (5) ◽  
pp. eaav8965 ◽  
Author(s):  
A. Block ◽  
M. Liebel ◽  
R. Yu ◽  
M. Spector ◽  
Y. Sivan ◽  
...  

The ultrafast response of metals to light is governed by intriguing nonequilibrium dynamics involving the interplay of excited electrons and phonons. The coupling between them leads to nonlinear diffusion behavior on ultrashort time scales. Here, we use scanning ultrafast thermomodulation microscopy to image the spatiotemporal hot-electron diffusion in thin gold films. By tracking local transient reflectivity with 20-nm spatial precision and 0.25-ps temporal resolution, we reveal two distinct diffusion regimes: an initial rapid diffusion during the first few picoseconds, followed by about 100-fold slower diffusion at longer times. We find a slower initial diffusion than previously predicted for purely electronic diffusion. We develop a comprehensive three-dimensional model based on a two-temperature model and evaluation of the thermo-optical response, taking into account the delaying effect of electron-phonon coupling. Our simulations describe well the observed diffusion dynamics and let us identify the two diffusion regimes as hot-electron and phonon-limited thermal diffusion, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 922
Author(s):  
Hamdy M. Youssef ◽  
Najat. A. Alghamdi

The use of lasers and thermal transfers on the skin is fundamental in medical and clinical treatments. In this paper, we constructed and applied bioheat transfer equations in the context of a two-temperature heat conduction model in order to discuss the three-dimensional variation in the temperature of laser-irradiated biological tissue. The amount of thermal damage in the tissue was calculated using the Arrhenius integral. Mathematical difficulties were encountered in applying the equations. As a result, the Laplace and Fourier transform technique was employed, and solutions for the conductive temperature and dynamical temperature were obtained in the Fourier transform domain.


2018 ◽  
Vol 505 (3) ◽  
pp. 781-786 ◽  
Author(s):  
Toshihiro Sera ◽  
Shingo Komine ◽  
Masataka Arai ◽  
Yasuhiro Sunaga ◽  
Hideo Yokota ◽  
...  

2005 ◽  
Vol 2005.43 (0) ◽  
pp. 237-238
Author(s):  
Takayuki TAMAOGI ◽  
Yutaka ARIMITSU ◽  
Yuji SOGABE ◽  
Zhiqiang WU

Volume 3 ◽  
2004 ◽  
Author(s):  
Y. Renardy ◽  
M. Renardy ◽  
T. Chinyoka ◽  
D. B. Khismatullin ◽  
J. Li

A volume of fluid method is developed with a parabolic representation of the interface for the surface tension force (VOF-PROST). This three-dimensional transient code is extended to treat viscoelastic liquids with the Oldroyd-B constitutive equation. Simulations of deformation for a Newtonian drop in a viscoelastic medium under shear are reported.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 300
Author(s):  
Claudia Cecioni ◽  
Alessandro Romano ◽  
Giorgio Bellotti ◽  
Paolo De Girolamo

The paper investigates on the hydro-acoustic waves propagation caused by the underwater earthquake, occurred on 6 February 2012, between the Negros and Cebu islands, in the Philippines. Hydro-acoustic waves are pressure waves that propagate at the sound celerity in water. These waves can be triggered by the sudden vertical sea-bed movement, due to underwater earthquakes. The results of three dimensional numerical simulations, which solve the wave equation in a weakly compressible sea water domain are presented. The hydro-acoustic signal is compared to an underwater acoustic signal recorded during the event by a scuba diver, who was about 12 km far from the earthquake epicenter.


Sign in / Sign up

Export Citation Format

Share Document