scholarly journals The Correlation Among Land Cover Spectral Indices and Surface Temperature Using Remote Sensing Techniques

2021 ◽  
Vol 1090 (1) ◽  
pp. 012024
Author(s):  
Aysar Jameel Abdalkadhum ◽  
Mohammed Mejbel Salih ◽  
Oday Zakariya Jasim
2020 ◽  
Vol 43 (2) ◽  
Author(s):  
Eduardo Da Silva Margalho ◽  
Madson Tavares Silva ◽  
Letícia Karyne Da Silva Cardoso ◽  
Ricardo Alves de Olinda ◽  
José Felipe Gazel Menezes

The objective of this work is to examine the spatial distribution of Continental Surface Temperature (CST) of the urban area of Belem / PA and the influence of the change of use and soil cover from remote sensing techniques. Products from Thematic Mapper (TM) and Thermal Infrared Sensor (TIRS) sensors coupled, respectively, to Landsat 5 and 8 satellites were used. The images acquired from the years 1994, 2008 and 2017 were processed, resampled (spatial resolution of 120 meters) and, finally, centroids were extracted with a total of 1252 points, using the Quantum GIS software. Subsequently, spectral indices, NDVI, NDBI and albedo were calculated, which represent, respectively, the presence of vegetation, exposed soil or built area and reflectivity rate. The results showed that CST showed an increase in all sectors of the study area, mainly between the years 2008 and 2017. The sector with the highest elevation of the CST was the urban center, as it presented values below 25.0 ºC in the image of 1994 and above 35.0 ºC in the 2017 image. In contrast, the ecological park sector showed the lowest increase in CST, from 20.0 ºC (1994) to 25.0 ºC (2017). According to the analysis of the spectral indices, the intensification of CST is directly associated with the strong territorial expansion, since from the NDVI values the degradation of the vegetation cover was noted. This degradation is observed in the comparisons of the images, in which it is possible to verify the decrease in the NDVI values in the entire study area, whose values represent the decrease in the vegetation cover. The sector with the greatest withdrawal of green areas was the northern zone, as it showed a drop in NDVI values, from 0.7 in 1994 to 0.3 in the 2017 image. It was also observed that the density of the constructed area was intensified, presenting increasing values of NDBI. Added to these NDVI and NDBI values, higher reflectivity rate values were noted, whose values in the urban center of Belem in 1994 were 0.1% and which exceeded 0.5% in the image for the year 2017, ratifying the impact of changes in land cover and the direct association between changes in the environment and CST. In general, the results indicate that the uncontrolled expansion of the urban process and the change in land cover cause the intensification of CST.


2016 ◽  
Vol 9 (2) ◽  
pp. 614 ◽  
Author(s):  
Elânia Daniele Silva Araújo

A intensa urbanização causa diversos problemas de natureza ambiental, climática e social. O crescimento não planejado da população urbana e a remoção da vegetação são fatores que intensificam estes problemas. As temperaturas na cidade são significativamente mais quentes do que as suas zonas rurais circundantes devido às atividades humanas. As intensas mudanças espaciais em áreas urbanas, promovem significativo aumento na temperatura, causando o chamado efeito de Ilha de Calor Urbano (ICU). Campina Grande é uma cidade de tamanho médio que experimentou um crescimento desordenado, desde o tempo do comércio de algodão e, como qualquer cidade de grande ou médio porte, sofre alterações em seu espaço. Dessa forma, este estudo teve por objetivo analisar a variabilidade espaço-temporal da temperatura da superfície (Ts) e detectar ICU, através de técnicas de sensoriamento remoto. Para o efeito, foram utilizadas imagens dos satélites Landsat 5 e 8, dos anos de 1995, 2007 e 2014. Aumentos da Ts foram bem evidentes e foram detectadas duas ICU. Campina Grande mostra um padrão de tendência: o crescimento urbano não planejado é responsável por mudanças no ambiente físico e na forma e estrutura espacial da cidade, o que se reflete sobre o microclima e, em última análise, na qualidade de vida das pessoas.   ABSTRACT The intense urbanization causes several problems of environmental, climate and social nature. The unplanned growth of urban population and the vegetation removal are factors that deepen these problems. Temperatures in the city are significantly warmer than its surrounding rural areas due to human activities. Large spatial changes in urban areas promote significant increase in temperature, causing the so-called Urban Heat Island effect (UHI). Campina Grande is a medium-sized town that experienced an uncontrolled growth since the time of the cotton trade and like any large or medium-sized city, undergoes changes in its space. Therefore, this study aimed to analyze surface temperature spatial and temporal variability and to detect potential UHI, through remote sensing techniques. Spectral images from Landsat 5 and 8 satellites were used. Using images from years 1995, 2007 and 2014, considerable increases in temperature were identified and two UHI were recognize. Campina Grande shows a trend pattern: the urban unplanned growth is responsible for changes in the physical environment and in the form and spatial structure of the city, reflecting on people quality of life. Keywords: change detection, surface temperature, heat islands, urbanization.   


Author(s):  
Carmelo Riccardo Fichera ◽  
Giuseppe Modica ◽  
Maurizio Pollino

One of the most relevant applications of Remote Sensing (RS) techniques is related to the analysis and the characterization of Land Cover (LC) and its change, very useful to efficiently undertake land planning and management policies. Here, a case study is described, conducted in the area of Avellino (Southern Italy) by means of RS in combination with GIS and landscape metrics. A multi-temporal dataset of RS imagery has been used: aerial photos (1954, 1974, 1990), Landsat images (MSS 1975, TM 1985 and 1993, ETM+ 2004), and digital orthophotos (1994 and 2006). To characterize the dynamics of changes during a fifty year period (1954-2004), the approach has integrated temporal trend analysis and landscape metrics, focusing on the urban-rural gradient. Aerial photos and satellite images have been classified to obtain maps of LC changes, for fixed intervals: 1954-1985 and 1985-2004. LC pattern and its change are linked to both natural and social processes, whose driving role has been clearly demonstrated in the case analysed. In fact, after the disastrous Irpinia earthquake (1980), the local specific zoning laws and urban plans have significantly addressed landscape changes.


2019 ◽  
Vol 5 (4) ◽  
pp. 1679-1688
Author(s):  
Michelle Cristina Araújo Picoli ◽  
Pedro Gerber Machado ◽  
Daniel Garbellini Duft ◽  
Fábio Vale Scarpare ◽  
Simone Toni Ruiz Corrêa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document