scholarly journals The Effect of Variable Engine Parameters on Performance and Emissions of DI Diesel Engine Running on Diesel-Biodiesel Blended with Nano Additives

2021 ◽  
Vol 1094 (1) ◽  
pp. 012122
Author(s):  
Hussein Jumaa ◽  
Mahmoud A Mashkour
2021 ◽  
Vol 39 (5A) ◽  
pp. 790-803
Author(s):  
Hussein Jumaa ◽  
Mahmoud A. Mashkour

The effect of humidification of the air on the performance of a compression ignition engine operating on diesel, biodiesel with nano additives was investigated. The experiment was carried out on a single-cylinder, four-stroke, naturally aspirated water-cooled, direct injection Ricardo (E6/US) diesel engine at a constant speed of 1800 rpm, and varying loads. A mixture of Biodiesel (waste cooking oil) and diesel fuel by four ratios (B5, B10, B15, and B20) was used in the experiment. Besides, five concentrations of Iron oxide nanoparticles (Fe2O3, with particle size 20 nm) as fuel-additives were prepared (10 ppm, 30 ppm, 50 ppm, 70 ppm, and 100 ppm), and added to the test fuels (Bio-Diesel).  Taguchi Method by DOE was used for the optimization in this investigation. The results of Taguchi Method experiments identified the biodiesel (B20), nano additive (100 ppm), relative humidity (65%). The experimental results manifested that BTE improved by 17.62% and BSFC decreased by 12.72%, while NOx and PM reduced by 8.45%, 24.17%, respectively.


Author(s):  
G. Sugash ◽  
S. Rubalingam ◽  
U. Praveen Kumar ◽  
Gurram Venkata Vinod Kumar ◽  
L. R. Akashragam

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1489
Author(s):  
R. S. Gavhane ◽  
A. M. Kate ◽  
Manzoore Elahi M. Soudagar ◽  
V. D. Wakchaure ◽  
Sagar Balgude ◽  
...  

The present study examines the effect of silicon dioxide (SiO2) nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. The morphology of nano-additives was studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The Ultrasonication process was used for the homogeneous blending of nano-additives with biodiesel, while surfactant was used for the stabilisation of nano-additives. The physicochemical properties of pure and blended fuel samples were measured as per ASTM standards. The performance and emissions characteristics of different fuel samples were measured at different loading conditions. It was found that the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) increased by 3.48–6.39% and 5.81–9.88%, respectively, with the addition of SiO2 nano-additives. The carbon monoxide (CO), hydrocarbon (HC) and smoke emissions for nano-additive added blends were decreased by 1.9–17.5%, 20.56–27.5% and 10.16–23.54% compared to SBME25 fuel blends.


Sign in / Sign up

Export Citation Format

Share Document