scholarly journals Flexural vibrations of the console with frictio

2021 ◽  
Vol 1191 (1) ◽  
pp. 012010
Author(s):  
A.A. Pozhalostin ◽  
A.V. Panshina
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3926
Author(s):  
Mengen Li ◽  
Qiaoyun Zhang ◽  
Bingbing Wang ◽  
Minghao Zhao

The performance of devices fabricated from piezoelectric semiconductors, such as sensors and actuators in microelectromechanical systems, is superior; furthermore, plate structures are the core components of these smart devices. It is thus important to analyze the electromechanical coupling properties of piezoelectric semiconductor nanoplates. We established a nanoplate model for the piezoelectric semiconductor plate structure by extending the first-order shear deformation theory. The flexural vibrations of nanoplates subjected to a transversely time-harmonic force were investigated. The vibrational modes and natural frequencies were obtained by using the matrix eigenvalue solver in COMSOL Multiphysics 5.3a, and the convergence analysis was carried out to guarantee accurate results. In numerical cases, the tuning effect of the initial electron concentration on mechanics and electric properties is deeply discussed. The numerical results show that the initial electron concentration greatly affects the natural frequency and electromechanical fields of piezoelectric semiconductors, and a high initial electron concentration can reduce the electromechanical fields and the stiffness of piezoelectric semiconductors due to the electron screening effect. We analyzed the flexural vibration of typical piezoelectric semiconductor plate structures, which provide theoretical guidance for the development of new piezotronic devices.


1970 ◽  
Vol 36 (292) ◽  
pp. 2011-2019
Author(s):  
Mitsuru ENDO ◽  
Osamu TANIGUCHI
Keyword(s):  

1961 ◽  
Vol 28 (2) ◽  
pp. 288-291 ◽  
Author(s):  
H. D. Conway

The bending by uniform lateral loading, buckling by two-dimensional hydrostatic pressure, and the flexural vibrations of simply supported polygonal plates are investigated. The method of meeting the boundary conditions at discrete points, together with the Marcus membrane analog [1], is found to be very advantageous. Numerical examples include the calculation of the deflections and moments, and buckling loads of triangular square, and hexagonal plates. A special technique is then given, whereby the boundary conditions are exactly satisfied along one edge, and an example of the buckling of an isosceles, right-angled triangle plate is analyzed. Finally, the frequency equation for the flexural vibrations of simply supported polygonal plates is shown to be the same as that for buckling under hydrostatic pressure, and numerical results can be written by analogy. All numerical results agree well with the exact solutions, where the latter are known.


Author(s):  
H. T. Banks ◽  
C. A. Smith

Abstract In this presentation we will report on joint efforts with D.J. Inman and his colleagues at MSL, SUNY at Buffalo, to develop viable models for the analysis and control of elastic structures exhibiting coupled torsional and flexural vibrations. A model for coupled torsion and bending is developed which incorporates Kelvin Voigt damping and warping. Approximation techniques are introduced and preliminary numerical results are discussed. Experimental data is presented and used to test our computational results.


Sign in / Sign up

Export Citation Format

Share Document