scholarly journals Ridge Gap Waveguide based band pass filter for Ku-band Application

2021 ◽  
Vol 1206 (1) ◽  
pp. 012011
Author(s):  
Neetirajsinh J Chhasatia ◽  
Jitendra P Chaudhari ◽  
Amit V Patel

Abstract This paper describes a simple, low loss, compact tuneable band pass filter based on ridge gap waveguide (RGW) technology for the Ku-band applications. This is achieved by keeping the height of the air gap in the gap guide structure equal to the thickness of the substrate or base of the structure. The resonant frequency and electromagnetic (EM) field distribution of the structure is investigated. This filter is designed by inserting the proposed ridge in the cut-off region of the gap waveguide. The frequency of tuning has been carried out using the slot created on ridge, which generates capacitive effect. Experimental results of the manufactured structure show an insertion loss of approximately 0.15 dB and a return loss of 16.38 dB over 4.5% relative bandwidth in Ku-band. The structure, put forwarded here, has been designed and optimized in the CST microwave studio environment and simulated results are validated by experimental results. The size of the structure is 64.65 mm × 64.65 mm × 7 mm.

2021 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Arie Setiawan ◽  
Taufiqqurrachman Taufiqqurrachman ◽  
Adam Kusumah Firdaus ◽  
Fajri Darwis ◽  
Aminuddin Rizal ◽  
...  

Short range radar (SRR) uses the K-band frequency range in its application. The radar requires high-resolution, so the applied frequency is 1 GHz wide. The filter is one of the devices used to ensure only a predetermined frequency is received by the radar system. This device must have a wide operating bandwidth to meet the specification of the radar. In this paper, a band pass filter (BPF) is proposed. It is designed and fabricated on RO4003C substrate using the substrate integrated waveguide (SIW) technique, results in a wide bandwidth at the K-band frequency that centered at 24 GHz. Besides the bandwidth analysis, the analysis of the insertion loss, the return loss, and the dimension are also reported. The simulated results of the bandpass filter are: VSWR of 1.0308, a return loss of -36.9344 dB, and an insertion loss of -0.6695 dB. The measurement results show that the design obtains a VSWR of 2.067, a return loss of -8.136 dB, and an insertion loss of -4.316  dB. While, it is obtained that the bandwidth is reduced by about 50% compared with the simulation. The result differences between simulation and measurement are mainly due to the imperfect fabrication process.


2016 ◽  
Vol 26 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Mehmet Sagbas ◽  
Umut Engin Ayten ◽  
Herman Sedef ◽  
Shahram Minaei

The aim of this paper is proposing an alternative method to Gorski-Popiel Technique in realization of synthetic transformers. A new synthetic floating transformer (FT) circuit is also given. The proposed synthetic transformer circuit uses two current backward transconductance amplifiers (CBTAs), three resistors, and two grounded capacitors. The primary self-inductance, the secondary self-inductance, and the mutual inductance can be independently controlled and can be tuned electronically by changing the biasing current of the employed CBTAs. It has a good sensitivity performance with respect to tracking errors. A band-pass filter is also realized to test the performance of the proposed synthetic transformer circuit. The validity of the proposed synthetic transformer circuit is demonstrated by PSPICE simulations and experimental results.


2013 ◽  
Vol 392 ◽  
pp. 672-675 ◽  
Author(s):  
Jian Chang Du ◽  
Lai Yun Ji ◽  
Li Juan He

A high-temperature superconducting (HTS) band-pass filter centered frequency at 127.5MHz was successfully designed and developed. The HTS filter is 14-pole, adopting compact symmetrical dual-spiral resonators. The filter was fabricated on a 3-inch-diameter 0.5-mm-thick LaAlO3 wafer with double-sided DyBa2Cu3O7 thin films. Through the low temperature test, the insertion loss of the HTS filter is under 0.1dB, the bandwidth is 20 MHz, the return loss is better than-22dB and the out-of-band rejection is greater than 80dB. The filters measurements agree well with the simulation.


This paper presents a voltage-mode(VM) tunable multifunction inverse filter configuration employing current differencing buffered amplifiers (CDBA). The presented structure utilizes two CDBAs, two/three capacitors and four/five resistors to realize inverse low pass filter (ILPF), inverse high pass filter (IHPF), inverse band pass filter (IBPF), and inverse band reject filter(IBRF) from the same circuit topology by suitable selection(s) of the branch admittances(s). PSPICE simulations have been performed with 0.18µm TSMC CMOS technology to validate the theory. Some sample experimental results have also been provided using off-the-shelf IC AD844 based CDBA.


Sign in / Sign up

Export Citation Format

Share Document