scholarly journals Revealing circular material flow in Terrazzo making process

2022 ◽  
Vol 1212 (1) ◽  
pp. 012009
Author(s):  
V A Ujung ◽  
A R Wahid ◽  
P Atmodiwirjo

Abstract This paper investigates the value in material expression that reveals the material resource flow through terrazzo making process. The potential of the patterning process as a vital practice in terrazzo making is posed through attention to the use of salvaged elements and fragmented pieces of the material. They are an essential part of circular economy practice knowledge. The patterning process, such as reinforcement and recombination of salvaged materials is decreasing carbon emissions produced by fabricating new components of the terrazzo. Besides, the patterning process enables the materialization of the design intention and locals’ interests and particularities; in which it adds value to the material. This study was conducted through a workshop in Lombok, Indonesia, as part of an exhibition of architectural materials that were produced locally from earth-based ingredients. It is found that the value of sustainability lies in its ability to promote such circular strategies that can enable improved material resource efficiency as well as generate material value.

Author(s):  
Leonidas Milios

AbstractThe transition to a circular economy is a complex process requiring wide multi-level and multi-stakeholder engagement and can be facilitated by appropriate policy interventions. Taking stock of the importance of a well-balanced policy mix that includes a variety of complementing policy instruments, the circular economy action plan of the European Union (COM(2020) 98 final) includes a section about “getting the economics right” in which it encourages the application of economic instruments. This contribution presents a comprehensive taxation framework, applied across the life cycle of products. The framework includes (1) a raw material resource tax, (2) reuse/repair tax relief, and (3) a waste hierarchy tax at the end of life of products. The research is based on a mixed method approach, using different sources to analyse the different measures in the framework. More mature concepts, such as material resource taxes, are analysed by reviewing the existing literature. The analysis of tax relief on repairs is based on interviews with stakeholders in Sweden, where this economic policy instrument has been implemented since 2017. Finally, for the waste hierarchy tax, which is a novel proposition in this contribution, macroeconomic modelling is used to analyse potential impacts of future implementation. In all cases, several implementation challenges are identified, and potential solutions are discussed according to literature and empirical sources. Further research is required both at the individual instrument and at the framework level. Each of the tax proposals needs a more detailed examination for its specificities of implementation, following the results of this study.


1973 ◽  
Vol 28 (12) ◽  
pp. 1967-1968 ◽  
Author(s):  
W. Helfrich

Permeation, i. e. material flow through cholesteric and smectic layers, may vary in speed for the components of a mixture. We derive qualitative formulas for the permeation rate of solute molecules in cholesterics as a function of their size. The possibility of a new kind of chromatography based on permeation in cholesterics or smectics is discussed.


2011 ◽  
Vol 347-353 ◽  
pp. 2961-2966
Author(s):  
Dian Ming Geng ◽  
Jia Xiang Liu

In order to study the development of regional recycling economy, the material inputs and outputs of the eco-economic system in Shandong Province during the period from 1996 to 2009 were systematically analyzed by the material flow analysis(MFA). The results show that, (1)excluding water, material inputs and outputs rose persistently, but both were lower than the rate of GDP growth. (2)Water supply had a turning point in 2003, from 25.239 billion tons down to 21.934 billion tons, followed by the total annual water supply has been maintained at 220 million tons. At the same time the amount of wastewater emissions is increasing, especially domestic wastewater emissions had faster growth and that increased pressure on the regional water environment;(3) Steady increase in material input intensity, material output intensity presented a first increased and then decreased trend, that showed since Shandong Province proposed the strategic planning to develop circular economy, the development of regional circular economy have improved the material utilization efficiency and made a material reduction in output in the case of material input growth achieved. The rapid increase of material input and output efficiency further illustrated the efficiency of resource comprehensive utilization and waste output have been significantly improved.


2021 ◽  
Author(s):  
MANZHI LIU ◽  
Jixin Wen ◽  
Linlin Zhang ◽  
Jixin Wu ◽  
Xiaotao Yang ◽  
...  

Abstract Recycling waste plastics is one of the important ways to save petroleum resources and reduce carbon emissions. However, the current recycling rate of waste plastics is still low. Material flow analysis can help determine the flow of waste plastics, and life cycle assessment (LCA) can be used to quantify environmental impacts. The present study integrates these two methods into the model construction of the residents’ waste plastics recycling decision-support system. This model construction is followed by sensitivity analysis of the relevant parameters affecting the performance of the waste plastics recycling system. Finally, present study forecasts the recycling system’s performance and environmental impacts by setting four optimization scenarios based on sensitivity analysis. The results show that in 2019, A total of 8.39 million tons of high-end applications were recovered, carbon emissions during the recycling process were 34.9 million tons, and dioxin emissions were 316.11 g TEQ, with a total emission reduction of 24.47 million tons of CO2 compared to the original production. In the scenario of comprehensive improvement, in 2035, the recycling volume of high-end applications will rise to 33.96 million tons, the carbon emissions will rise to 64.73 million tons, the dioxin emissions will drop to 165.98 g TEQ, and the carbon emission reduction will rise to 99.06 million tons. This research has a certain guiding role for policy makers to formulate industry norms and related policies for waste plastic recycling.


2021 ◽  
Author(s):  
Walter Swann ◽  
Francois Hanus ◽  
Olivier Vasart ◽  
Alan Knight

<p>Steel is the most recycled material in the world and a key contributor to the circular economy, but todays primary steelmaking methods result in high embodied carbon. In the face of the climate emergency, designers have been tasked with driving down the upfront emissions of the built environment. Naturally the embodied carbon characteristics of all materials have been put under the microscope and those with high impacts are being demonised, primary steel is one of those. So how does a designer balance the immediate needs of the climate emergency with the future needs of society? When confronted with a material like steel with practically perfect circularity characteristics but high embodied impacts how do designers balance the needs of today with those of tomorrow? What if steel could be made with zero carbon emissions? Coupled with its high potential for re-use and its high recycling rates is steel a friend and ally in the face of the climate emergency rather than a foe?</p>


Detritus ◽  
2021 ◽  
pp. 25-31
Author(s):  
Cecilia Matasci ◽  
Marcel Gauch ◽  
Heinz Boeni

Environmental threats are triggered by the overconsumption of raw materials. It is therefore necessary to move towards a society that both reduces extraction and keeps the majority of the extracted raw materials in the socio-economic system. Circular economy is a key strategy to reach these goals. To implement it effectively, it is necessary to understand and monitor material flows and to define hotspots, i.e. materials that need to be tackled with the highest priority. This paper is aimed at determining how to increase circularity in the Swiss economy by means of a Material Flow Analysis coupled with a simplified Life Cycle Assessment. After having characterized material flows, we analyzed two types of hotspots: i) Raw materials consumed and/or disposed at high level, and ii) Raw materials whose extraction and production generates high environmental impacts. The Material Flow Analysis shows that each year 119 Mt of raw materials enter the Swiss economy. Therefrom, 15 Mt are derived from recycled waste inside the country; 67 Mt leave the system yearly; 27 Mt towards disposal. Out of the disposed materials, 56% are recycled and re-enter the socio-economic system as secondary materials. Looking at hotspots; concrete, asphalt, gravel and sand are among materials that are consumed and disposed at high level. Yet, looking at greenhouse gas emissions generated during extraction and production, metals - including the ones in electrical and electronic equipment - as well as textiles are among the categories that carry the biggest burden on the environment per unit of material.


Sign in / Sign up

Export Citation Format

Share Document