scholarly journals Performance Evaluation of Low Cost LoRa Modules in IoT Applications

Author(s):  
Shuhaizar Daud ◽  
Teoh Shi Yang ◽  
Muhamad Asmi Romli ◽  
Zahari Awang Ahmad ◽  
Norfadila Mahrom ◽  
...  
Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


2018 ◽  
Vol 8 (3) ◽  
pp. 416 ◽  
Author(s):  
Andrea Masiero ◽  
Francesca Fissore ◽  
Alberto Guarnieri ◽  
Francesco Pirotti ◽  
Domenico Visintini ◽  
...  

Author(s):  
Gustavo Caiza ◽  
Carlos S. Leon ◽  
Luis A. Campana ◽  
Carlos A. Garcia ◽  
Marcelo V. Garcia

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


Author(s):  
Govardhani Immadi ◽  
M. Venkata Narayana ◽  
A. Navya ◽  
C. Anudeep Varma ◽  
A. Abhishek Reddy ◽  
...  

<p>Antennas are long used for communication of data since a century and their usage has been diversified over the past two decades and the antennas also entered the domain of medical fields. A rectangular microstrip patch antenna has been designed on a substrate integrated waveguide with frequency selective surface which is in the shape of a square. The design of this antenna with SIW are done by using CST on a low cost FR4 substrate where є<sub>r</sub> =4.4, h=1.58 mm and tan δ=0.0035. The SIW structure merit is utilized on the traditional FSS is simulated and verified by using CST.</p>


Sign in / Sign up

Export Citation Format

Share Document