scholarly journals CFD analysis of heat transfer performance of graphene based hybrid nanofluid in radiators

Author(s):  
Bharath R Bharadwaj ◽  
K Sanketh Mogeraya ◽  
D M Manjunath ◽  
Babu Rao Ponangi ◽  
K S Rajendra Prasad ◽  
...  
2014 ◽  
Vol 6 ◽  
pp. 147059 ◽  
Author(s):  
Behrouz Takabi ◽  
Saeed Salehi

This paper numerically examines laminar natural convection in a sinusoidal corrugated enclosure with a discrete heat source on the bottom wall, filled by pure water, Al2O3/water nanofluid, and Al2O3-Cu/water hybrid nanofluid which is a new advanced nanofluid with two kinds of nanoparticle materials. The effects of Rayleigh number (103≤Ra≤106) and water, nanofluid, and hybrid nanofluid (in volume concentration of 0% ≤ ϕ ≤ 2%) as the working fluid on temperature fields and heat transfer performance of the enclosure are investigated. The finite volume discretization method is employed to solve the set of governing equations. The results indicate that for all Rayleigh numbers been studied, employing hybrid nanofluid improves the heat transfer rate compared to nanofluid and water, which results in a better cooling performance of the enclosure and lower temperature of the heated surface. The rate of this enhancement is considerably more at higher values of Ra and volume concentrations. Furthermore, by applying the modeling results, two correlations are developed to estimate the average Nusselt number. The results reveal that the modeling data are in very good agreement with the predicted data. The maximum error for nanofluid and hybrid nanofluid was around 11% and 12%, respectively.


Author(s):  
Rajesh Nimmagadda ◽  
Durga Prakash Matta ◽  
Rony Reuven ◽  
Lazarus Godson Asirvatham ◽  
Somchai Wongwises ◽  
...  

Abstract A 2D numerical investigation has been carried out to obtain the heat transfer performance of hybrid (Al2O3 + Ag) nanofluid in a lid driven cavity over solid block under the influence of uniform as well as non-uniform magnetic field. The geometrical domain consists of a cavity containing nanofluid that is driven by means of lid moving in one direction. This circulating nanofluid will extract enormous amount of heat from the solid block underneath the cavity resulting in conjugate heat transfer. A homogenous solver based on the finite volume method with conjugate heat transfer was developed and adopted in the existing study. The heat efficient hybrid nanofluid (HyNF) pair (2.4 vol.% Ag + 0.6 vol.% Al2O3) obtained by Nimmagadda and Venkatasubbaiah [1] is used in the present investigation. Moreover, efficient non-uniform sinusoidal magnetic field identified by Nimmagadda et al. [2] is also implemented and compared with uniform magnetic field. Furthermore, the magnetic field is applied over the geometrical domain along the two axial directions separately and the effective heat transfer performance is obtained. The significant impact of extensive parameters like Reynolds number, nanoparticle type, nanoparticle concentration, magnetic field type, magnetic field location and the strength of the magnetic field on heat transfer performance are systematically analyzed and presented.


2018 ◽  
Vol 38 (2) ◽  
pp. 33-43
Author(s):  
Hwi-Ung Choi ◽  
Rokhman Fatkhur ◽  
Young-Bok Kim ◽  
Jung-In Yoon ◽  
Chang-Hyo Son ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3457 ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Hussein A. Mohammed ◽  
Mohammed A. Almeshaal

In this paper, a 2D numerical study of natural convection heat transfer in a W-shaped inclined enclosure with a variable aspect ratio was performed. The enclosure contained a porous medium saturated with Ag/Al2O3 hybrid nanofluid in the presence of uniform heat generation or absorption under the effect of a uniform magnetic field. The vertical walls of the enclosure were heated differentially; however, the top and bottom walls were kept insulated. The governing equations were solved with numerical simulation software COMSOL Multiphysics which is based on the finite element method. The results showed that the convection heat transfer was improved with the increase of the aspect ratio; the average Nusselt number reached a maximum for an aspect ratio (AR) = 0.7 and the effect of the inclination was practically negligible for an aspect ratio of AR = 0.7. The maximum heat transfer performance was obtained for an inclination of ω = 15 and the minimum is obtained for ω = 30 . The addition of composite nanoparticles ameliorated the convection heat transfer performance. This effect was proportional to the increase of Rayleigh and Darcy numbers, the aspect ratio and the fraction of Ag in the volumetric fraction of nanoparticles.


2016 ◽  
Vol 148 ◽  
pp. 1162-1169 ◽  
Author(s):  
Rajashekhar Pendyala ◽  
Suhaib Umer Ilyas ◽  
Lian Rui Lim ◽  
Narahari Marneni

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
Elham Montazer ◽  
Mohammad Behshad Shafii ◽  
D.D. Ganji

Purpose The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2–Fe3O4 hybrid nanoparticles. Design/methodology/approach The domain of interest is bounded by constant temperature horizontal corrugated surfaces and isothermal vertical flat surfaces. The numerical outputs are explained in the type of isotherms, streamline and average Nusselt number with variations of the Rayleigh number, Hartmann number, nanoparticle shape factor and porosity of the porous medium. For solving the governing equations, the finite element method has been used. Findings The results show that Nuave is proportional to Rayleigh and nanoparticle shape factor directly as well as it has an inverse relation with Hartmann and porosity. The obtained results reveal that the shape factor parameter has a significant effect on the heat transfer performance, which shows a 55.44% contribution on the average Nusselt number. Originality/value As a novelty, to maximize the heat transfer performance in a corrugated walls enclosure, the optimal parameters have intended by using the response surface and Taguchi methods. Additionally, an accurate correlation for the average Nusselt number is developed with sensibly great precision.


Sign in / Sign up

Export Citation Format

Share Document