scholarly journals A Path Planning Method for Robotic Wire and Arc Additive Manufacturing of Thin-Walled Structures with Varying Thickness

Author(s):  
Guocai Ma ◽  
Gang Zhao ◽  
Zhihao Li ◽  
Wenlei Xiao
Author(s):  
S Mantovani ◽  
GA Campo ◽  
M Giacalone

Structural engineering in the automotive industry has moved towards weight reduction and passive safety whilst maintaining a good structural performance. The development of Additive Manufacturing (AM) technologies has boosted design freedom, leading to a wide range of geometries and integrating functionally-graded lattice structures. This paper presents three AM-oriented numerical optimization methods, aimed at optimizing components made of: i) bulk material, ii) a combination of bulk material and graded lattice structures; iii) an integration of solid, lattice and thin-walled structures. The optimization methods were validated by considering the steering column support of a mid-rear engine sports car, involving complex loading conditions and shape. The results of the three methods are compared, and the advantages and disadvantages of the solutions are discussed. The integration between solid, lattice thin-walled structures produced the best results, with a mass reduction of 49.7% with respect to the existing component.


2020 ◽  
Vol 26 (8) ◽  
pp. 1405-1420
Author(s):  
Fusheng Dai ◽  
Haiou Zhang ◽  
Runsheng Li

Purpose The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the problems of generating tool-paths on cylindrical or conical surfaces simply and precisely, and planning the welding process on these developable surfaces. Design/methodology/approach The paper presents the algorithm of tool-paths planning on conical surfaces using a parametric slicing equation and a spatial mapping method and deduces the algorithm of five-axis transformation by addressing the rotating question of two sequential points. The welding process is investigated with a regression fitting model on a flat surface, and experimented on a conical surface, which can be flattened onto a flat surface. Findings The paper provides slicing and path-mapping expressions for cylindrical and conical surfaces and a curvature-speed-width (CSW) model for wire and arc additive manufacturing to improve the surface appearances. The path-planning method and CSW model can be applied in the five-axis fabrication of the prototype of an underwater thruster. The CSW model has a confidence coefficient of 98.02% and root mean squared error of 0.2777 mm. The reverse measuring of the finished blades shows the residual deformation: an average positive deformation of about 0.5546 mm on one side of the blades and an average negative deformation of about −0.4718 mm on the other side. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability for the fabrication based on arbitrary surfaces. Originality/value This paper presented an integrated slicing, tool-path planning and welding process planning method for five-axis wire and arc additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document