scholarly journals Effect of calcining temperature on room temperature ionic conductivity of W, Y and Al co-doped Li7La3Zr2O12 solid electrolyte

Author(s):  
XiaoZhen Liu ◽  
Lei Ding ◽  
Yuze Liu ◽  
Xingjue Shi ◽  
Jie Chen ◽  
...  
Rare Metals ◽  
2020 ◽  
Author(s):  
Xiao-Zhen Liu ◽  
Lei Ding ◽  
Yu-Ze Liu ◽  
Li-Ping Xiong ◽  
Jie Chen ◽  
...  

2018 ◽  
Vol 124 (6) ◽  
Author(s):  
Changwei Lin ◽  
Yu Tang ◽  
Jun Song ◽  
Lei Han ◽  
Jingbo Yu ◽  
...  

2021 ◽  
pp. 2140002
Author(s):  
Mingxia Fan ◽  
Xiangyu Deng ◽  
Anqiao Zheng ◽  
Songdong Yuan

NASICON-type Li[Formula: see text]Al[Formula: see text]Ti[Formula: see text](PO[Formula: see text] (LATP) solid electrolytes have been widely studied because of its stability in the air, low material price and high ionic conductivity. Gd-doped Li[Formula: see text]Al[Formula: see text]Gd[Formula: see text]Ti[Formula: see text](PO[Formula: see text] ([Formula: see text]= 0, 0.025, 0.05, 0.075 and 0.1) with high ionic conductivity was successfully synthesized by solvothermal method for the first time in this work. The effect of Gd doping content on the structure and electrochemical performance of solid electrolytes was systematically studied. The optimal doping content of Gd is [Formula: see text]= 0.075. With the Gd doping content of 0.075, the solid electrolyte has the highest ionic conductivity of 4.23 × 10[Formula: see text] S cm[Formula: see text] at room temperature, the lowest activation energy of 0.247 eV and the highest relative density of 94.89%. This is because the fact that when [Formula: see text]= 0.075, it is the maximum content of Gd[Formula: see text] to replace Al[Formula: see text] and can completely enter the lattice of LATP, and does not emerge too much non-lithium ion conductive GdPO4 phase.


1990 ◽  
Vol 210 ◽  
Author(s):  
Yu Wenhai ◽  
Liu Wanyu

AbstractMontmorillonite(Mont) has been proved to be a kind of very promising solid electrolyte in recent years because of its good electric properties. It can be composed by polymer to prepare a mont-polymer complex which has high ionic conductivity and excellent plasticity. The film made of mont-polymer complex with room temperature ionic conduction has been used in solid state battery as solid electrolyte. It may be a new type of function material with futher application.


MRS Advances ◽  
2017 ◽  
Vol 3 (23) ◽  
pp. 1301-1307 ◽  
Author(s):  
Bo Wang

ABSTRACTLithium solid electrolyte with NASICON structure in the form of Li1+2xAlxTi2−xSixP3−xO12 solid solution has been prepared by high temperature solid state reaction using low cost kaolin as the starting material. The crystal structure of the solid solution was investigated by powder X-ray diffraction. The AC impedance measurements indicate that ionic conductivity increased by more than one order of magnitude when a small amount of Al3+ and Si4+ ions were incorporated into the LiTi2(PO4)3 crystal structure. The significant improvement on ionic conductivity can be attributed to the increased interstitial Li+ ions in the crystal structure. The highest ionic conductivity was found in Li1.2Al0.1Ti1.9Si0.1P2.9O12: 8.3 x 10-5 S·cm-1 at room temperature (21°C) and 1.5 x 10-3 S·cm-1 at 100°C.


2021 ◽  
Vol 340 ◽  
pp. 01046
Author(s):  
Artem Ulihin ◽  
Olga Protazanova

Superionic solid electrolyte Ag16I12P2O7 was prepared using solid state synthesis. The ionic conductivity of this compound was studied by the complex impedance spectroscopy method in a wide temperature range. It is shown that Ag16I12P2O7 is characterized by a high ionic conductivity at room temperature, comparable to the conductivity of liquid electrolytes.


2013 ◽  
Vol 1526 ◽  
Author(s):  
M. Helena Braga ◽  
Verena Stockhausen ◽  
Joana C.E. Oliveira ◽  
Jorge A. Ferreira

ABSTRACTWe have analyzed the hopping movement of a new ionic solid electrolyte by calculating defect formation energies and activation barriers. The role of the lattice during diffusion was established. Thermodynamic properties were determined by means of first principles and phonon calculations at working temperatures. The new solid electrolyte, an antiperovskite, Li3-2xMxAO (in which M is a higher valent cation like Ca2+ or Mg2+ and A is a halide like Cl- or Br- or a mixture of halides), was studied either pure or doped. Moreover, we present experimental ionic conductivity data for these novel solid state ionic conductors for the doped and the pure solid electrolyte from room temperature and up to ∼253 °C. In this paper, we compare the ionic conductivity of the latter solid electrolyte with other fast ionic conductors.


Sign in / Sign up

Export Citation Format

Share Document