Montmorillonite (MONT) Complex and their Application

1990 ◽  
Vol 210 ◽  
Author(s):  
Yu Wenhai ◽  
Liu Wanyu

AbstractMontmorillonite(Mont) has been proved to be a kind of very promising solid electrolyte in recent years because of its good electric properties. It can be composed by polymer to prepare a mont-polymer complex which has high ionic conductivity and excellent plasticity. The film made of mont-polymer complex with room temperature ionic conduction has been used in solid state battery as solid electrolyte. It may be a new type of function material with futher application.

Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6946
Author(s):  
Bin Zhao ◽  
Qi Wang ◽  
Boheng Yuan ◽  
Yafei Lu ◽  
Xiaogang Han

Solid-state plastic crystal electrolytes (SPCEs) have attracted much attention due to their high ionic conductivity at room temperature and polymer-like plasticity. Herein, we made a LiFePO4||Li solid state battery based on SPCEs. A SPCE film is made up of glass fiber, succinonitrile (SN), lithium bis (triflu-romethanesulphonyl) imid (LiTFSI), and LiNO3. Glass fiber is introduced to improve the mechanical property, and LiNO3 served as an additive to stabilize electrolyte/Li interface. The SPCE film delivers a high ionic conductivity of 7.3 × 10−4 S cm−1 at room temperature and has excellent stability with Li-metal anode. SPCE is also infused into cathode electrode and used as the interface with cathode particles, which can access a large interface contact area and deform reversibly with volume change. The LiFePO4||Li solid state battery based on SPCE can work well at ambient temperature, which shows a high initial specific capacity of 121.4 mAh g−1 and has 86.9% retention after 90 cycles at 0.5 C.


2021 ◽  
Vol 340 ◽  
pp. 01046
Author(s):  
Artem Ulihin ◽  
Olga Protazanova

Superionic solid electrolyte Ag16I12P2O7 was prepared using solid state synthesis. The ionic conductivity of this compound was studied by the complex impedance spectroscopy method in a wide temperature range. It is shown that Ag16I12P2O7 is characterized by a high ionic conductivity at room temperature, comparable to the conductivity of liquid electrolytes.


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


Author(s):  
Jung Yong Seo ◽  
Sunggeun Shim ◽  
Jin-Woong Lee ◽  
Byung Do Lee ◽  
Sangwon Park ◽  
...  

Na3PS4 is an archetypal room-temperature (RT), Na+-conducting, solid-state electrolyte. Various compositional modifications of this compound via iso/aliovalent substitution are known to provide a high ionic conductivity (ion) that is comparable...


2019 ◽  
Vol 12 (9) ◽  
pp. 2665-2671 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Jing Luo ◽  
Mohammad Norouzi Banis ◽  
Changhong Wang ◽  
...  

Ambient-air-stable Li3InCl6 halide solid electrolyte, with high ionic conductivity of 1.49 × 10−3 S cm−1 at 25 °C, delivers essential advantages over commercial sulfide-based solid electrolyte.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Revannath Dnyandeo Nikam ◽  
Myonghoon Kwak ◽  
Jongwon Lee ◽  
Krishn Gopal Rajput ◽  
Writam Banerjee ◽  
...  

AbstractAll solid-state lithium-ion transistors are considered as promising synaptic devices for building artificial neural networks for neuromorphic computing. However, the slow ionic conduction in existing electrolytes hinders the performance of lithium-ion-based synaptic transistors. In this study, we systematically explore the influence of ionic conductivity of electrolytes on the synaptic performance of ionic transistors. Isovalent chalcogenide substitution such as Se in Li3PO4 significantly reduces the activation energy for Li ion migration from 0.35 to 0.253 eV, leading to a fast ionic conduction. This high ionic conductivity allows linear conductance switching in the LiCoO2 channel with several discrete nonvolatile states and good retention for both potentiation and depression steps. Consequently, optimized devices demonstrate the smallest nonlinearity ratio of 0.12 and high on/off ratio of 19. However, Li3PO4 electrolyte (with lower ionic conductivity) shows asymmetric and nonlinear weight-update characteristics. Our findings show that the facilitation of Li ionic conduction in solid-state electrolyte suggests potential application in artificial synapse device development.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mengmeng Gao ◽  
Xiaolei Wu ◽  
Shuhong Yi ◽  
Shuwei Sun ◽  
Caiyan Yu ◽  
...  

Upgrading liquid electrolytes with all-solid-state electrolytes (ASEs) or quasi-solid-state electrolytes (QSEs) for solid-state batteries (SBs) have emerged not only to address the intrinsic disadvantages of traditional liquid lithium ion batteries,...


2021 ◽  
pp. 2140002
Author(s):  
Mingxia Fan ◽  
Xiangyu Deng ◽  
Anqiao Zheng ◽  
Songdong Yuan

NASICON-type Li[Formula: see text]Al[Formula: see text]Ti[Formula: see text](PO[Formula: see text] (LATP) solid electrolytes have been widely studied because of its stability in the air, low material price and high ionic conductivity. Gd-doped Li[Formula: see text]Al[Formula: see text]Gd[Formula: see text]Ti[Formula: see text](PO[Formula: see text] ([Formula: see text]= 0, 0.025, 0.05, 0.075 and 0.1) with high ionic conductivity was successfully synthesized by solvothermal method for the first time in this work. The effect of Gd doping content on the structure and electrochemical performance of solid electrolytes was systematically studied. The optimal doping content of Gd is [Formula: see text]= 0.075. With the Gd doping content of 0.075, the solid electrolyte has the highest ionic conductivity of 4.23 × 10[Formula: see text] S cm[Formula: see text] at room temperature, the lowest activation energy of 0.247 eV and the highest relative density of 94.89%. This is because the fact that when [Formula: see text]= 0.075, it is the maximum content of Gd[Formula: see text] to replace Al[Formula: see text] and can completely enter the lattice of LATP, and does not emerge too much non-lithium ion conductive GdPO4 phase.


Nanoscale ◽  
2021 ◽  
Author(s):  
Han Wang ◽  
Genfu Zhao ◽  
Shimin Wang ◽  
Dangling Liu ◽  
Zhi-Yuan Mei ◽  
...  

NASICON-type Na3Zr2Si2PO12 (NZSP) is supposed to be one of the most potential solid electrolytes with the characteristics of high ionic conductivity and safety for solid-state sodium batteries. Many methods have...


Sign in / Sign up

Export Citation Format

Share Document