scholarly journals Modelling drivers of variance and adaptation for the prediction of thermal perception and energy use in zero energy buildings

Author(s):  
Marcel Schweiker
Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


2019 ◽  
Vol 85 ◽  
pp. 08002
Author(s):  
Ion Murgescu ◽  
Lucia-Andreea El-Leathey ◽  
Rareş-Andrei Chihaia ◽  
Gabriela Cîrciumaru

Solar energy, today, is the leader in renewable energy and the world's increasing new energy source. In 2016, for the first time, newly installed photovoltaic capacity has increased by more than 50%, exceeding the new coal-fired power stations capacity established worldwide. At the beginning of the year, the European Parliament agreed the target that 35% renewable sources by 2030. Studies show that by 2050 approximately 45% of all the households in the EU could produce their own renewable energy and more than a third of them could be part of a renewable energy cooperative, despite the worries of the distribution companies. Furthermore, the EPBD directive (EU) - Energy Performance of Buildings pushes towards new and more performing buildings - nearly zero energy buildings (nZEB) - where energy efficiency and energy flexibility are essential to achieve the required performance targets. Nearly zero-energy buildings (NZEBs) have very high energy performance and could be achieved through the integration of renewable and decentralized energy sources, continuous grid optimization and the inclusion of increasing numbers of consumers becoming producers, so called prosumers. So far, the photovoltaic system is the single technology that can combine data from utility networks with household consumption and therefore should be considered a starting point for streamlining the electricity consumption and production which will be imposed by strict regulations.


2021 ◽  
Author(s):  
Mohammad Reza Bahrami

Nowadays, one of the global problems is climate change. Commercial and residential buildings are among the most powerful consumers of energy. The energy consumption of buildings increases because of the development of the residents’ needs. Zero Energy Building uses renewable energy sources therefore Zero Energy Buildings have advantages in the field of environmental care because of the mitigation of CO2 emissions and the decrease of energy use in the building sector. The deposits of fossil fuel deplete at a high rate. The new deposits are extremely hard to find and if they are discovered are smaller than already used ones. Therefore, Zero Energy Buildings are the solution for this problem because they do not depend on fuel.


2010 ◽  
Vol 5 (2) ◽  
pp. 79-90 ◽  
Author(s):  
Simi Hoque

This paper will discuss two Net Zero Energy homes in the United States. The aim is to discuss the differences and similarities in the construction type, energy use, active and renewable systems of the two homes. While each of the homes is designed to achieve net zero site energy use, the design and systems are very different. Furthermore, the measure that is used to qualify a home as net zero energy does not account for the full scope of work on each home. It is suggested that a new set of metrics be developed to allow for a more robust understanding of net zero energy buildings, one that integrates passive design strategies, occupant health and comfort, and durability. The objective is to facilitate a broader understanding of efficient and sustainable residential design. This understanding is critical to bringing Net Zero Energy Buildings to the public.


2018 ◽  
Vol 8 (1) ◽  
pp. 211-221
Author(s):  
Negar Aminoroayaei ◽  
Bahram Shahedi

In the current century, a suitable strategy is concerned for optimal consumption of energy, due to limited natural resources and fossil fuels for moving towards sustainable development and environmental protection. Given the rising cost of energy, environmental pollution and the end of fossil fuels, zero-energy buildings became a popular option in today's world. The purpose of this study is to investigate the factors affecting the design of zero-energy buildings, in order to reduce energy consumption and increase productivity, including plan form, climatic characteristics, materials, coverage etc. The present study collects the features of zero-energy building in Isfahan, which is based on the Emberger Climate View in the arid climate, by examining the books and related writings, field observations and using a descriptive method, in the form of qualitative studies. The results of the research showed that some actions are needed to save energy and, in general, less consumption of renewable energy by considering the climate and the use of natural conditions.


Sign in / Sign up

Export Citation Format

Share Document