scholarly journals Efficient energy use and storage practices within residential facilities for compliance with the nZEB criteria

2019 ◽  
Vol 85 ◽  
pp. 08002
Author(s):  
Ion Murgescu ◽  
Lucia-Andreea El-Leathey ◽  
Rareş-Andrei Chihaia ◽  
Gabriela Cîrciumaru

Solar energy, today, is the leader in renewable energy and the world's increasing new energy source. In 2016, for the first time, newly installed photovoltaic capacity has increased by more than 50%, exceeding the new coal-fired power stations capacity established worldwide. At the beginning of the year, the European Parliament agreed the target that 35% renewable sources by 2030. Studies show that by 2050 approximately 45% of all the households in the EU could produce their own renewable energy and more than a third of them could be part of a renewable energy cooperative, despite the worries of the distribution companies. Furthermore, the EPBD directive (EU) - Energy Performance of Buildings pushes towards new and more performing buildings - nearly zero energy buildings (nZEB) - where energy efficiency and energy flexibility are essential to achieve the required performance targets. Nearly zero-energy buildings (NZEBs) have very high energy performance and could be achieved through the integration of renewable and decentralized energy sources, continuous grid optimization and the inclusion of increasing numbers of consumers becoming producers, so called prosumers. So far, the photovoltaic system is the single technology that can combine data from utility networks with household consumption and therefore should be considered a starting point for streamlining the electricity consumption and production which will be imposed by strict regulations.

2014 ◽  
Vol 1020 ◽  
pp. 561-565 ◽  
Author(s):  
Rastislav Ingeli ◽  
Katarína Minarovičová ◽  
Miroslav Čekon

Buildings account for 40% of the primary energy use and 24%of the generation of green house gases worldwide. Therefore, a reduction of the specific energy demand of buildings and increased use of renewable energy are important measures of climate change mitigation. On the 18th of May 2010 a recast of the EPBD was approved which further clarifies the intention that buildings shall have a low energy demand. The recast of the EPBD specifies that by the end of 2020 all new buildings shall be “nearly zero-energy buildings”. A nearly zero-energy building is defined as a building with a very high energy performance and very simple shape. The current focusing on the energy efficiency of the building operation may lead to uniform cuboid architecture with heavy insulated building envelopes. The paper deals with the influence of energy concept on architectural elements (and their properties as shape, material, colour, texture etc.)


2013 ◽  
Vol 649 ◽  
pp. 15-18 ◽  
Author(s):  
Michal Kraus ◽  
Filip Konečný

The Energy Performance of Buildings Directive requires that all new buildings must be nearly zero energy buildings by 2020. A nearly zero energy building is a building that has a very high energy performance. The current absence of evaluating the nearly zero energy buildings encourages to set up simple and explicit methodology for evaluation nZEB in the Czech Republic. The evaluation of the nearly zero building is based on the annual balance of energy.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012112
Author(s):  
R Moschetti ◽  
B Time ◽  
L Gullbrekken ◽  
V Heide ◽  
L Georges ◽  
...  

Abstract As the existing building stock is responsible for high energy use and greenhouse gas emissions, energy upgrading projects have been acknowledged as crucial for the energy performance improvement of existing buildings, as well as for environment preservation and rational use of resources. The aim of this article is to investigate the definition of a nearly zero-energy building (nZEB) level for the energy upgrading of single-family houses. In particular, the findings from a research project, i.e., “energy upgrading of wooden dwellings to nearly zero energy level” (OPPTRE), are presented and discussed. A core task of OPPTRE was to carry out an architectural competition, where six interdisciplinary teams proposed innovative solutions for upgrading to a nZEB level representative Norwegian wooden single-family houses, from the period 1950-1990. The upgrading measures proposed in the OPPTRE competition focused on several aspects, such as architectural quality, indoor thermal environment, energy use/generation, carbon footprint, and cost effectiveness. General principles for a nZEB level achievement in upgrading projects are discussed in this article, as deducted from the evaluation of the results of the OPPTRE architectural competition. In particular, the focus is on examining the solutions proposed for upgrading building envelope and technical building systems. Energy use, energy generation, investment costs, and CO2 emissions are examined across the various OPPTRE projects, striving to define a trade-off among different parameters for the achievement of a nZEB level. The findings of this paper support the creation of knowledge in nearly zero-energy upgrading of wooden single-family houses, aiming to a more systematic definition of a nZEB level in such projects. This can be relevant for several stakeholders, such as governmental institutions, homeowners, builders, and private or public decision makers, towards the market uptake of nZEB upgrading by 2030.


2013 ◽  
Vol 4 (2) ◽  
pp. 163-169
Author(s):  
Zs. Szalay ◽  
T. Csoknyai

Abstract The recast of the Energy Performance Building Directive contains a new article about the need to increase the number of buildings which go beyond current national requirements, and to draw up national plans for increasing the number of nearly zero-energy buildings (nZEB) with the final target that by 2020 all new buildings shall be nearly-zero energy. Nearly zero-energy buildings are buildings with a very high energy performance, where the remaining low energy demand can be supplied to a significant extent by renewable energy. In this paper, a detached house complying with the proposed Hungarian nZEB requirements is analysed. The life cycle cost and life cycle environmental impacts of the building are assessed for various building service systems to optimise the building design.


2017 ◽  
Vol 19 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Eduard Latosov ◽  
Anna Volkova ◽  
Andres Siirde ◽  
Jarek Kurnitski ◽  
Martin Thalfeldt

Abstract District heating (DH) offers the most effective way to enhance the efficiency of primary energy use, increasing the share of renewable energy in energy consumption and decreasing the amount of CO2 emissions. According to Article 9 section 1 of the Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, the Member states of the European Union are obligated to draw up National Plans for increasing the number of nearly zero-energy buildings [1]. Article 2 section 2 of the same Directive states that the energy used in nearly zero-energy buildings should be created covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby. Thus, the heat distributed by DH systems and produced by manufacturing devices located in close vicinity of the building also have to be taken into account in determining the energy consumption of the building and the share of renewable energy used in the nearly zero-energy buildings. With regard to the spreading of nearly zero-energy and zero-energy houses, the feasibility of on-site energy (heat and/or electricity) production and consumption in DH areas energy (i.e. parallel consumption, when the consumer, connected to DH system, consumes energy for heat production from other sources besides the DH system as well) needs to be examined. In order to do that, it is necessary to implement a versatile methodological approach based on the principles discussed in this article.


Energies ◽  
2013 ◽  
Vol 6 (7) ◽  
pp. 3506-3527 ◽  
Author(s):  
Giuliano Dall'O' ◽  
Valentina Belli ◽  
Mauro Brolis ◽  
Ivan Mozzi ◽  
Mauro Fasano

2016 ◽  
Vol 861 ◽  
pp. 609-617
Author(s):  
Krisztina Severnyák ◽  
András Zöld

Based on the EPBD 2010 directive and the mandated method of cost-optimum calculation the forthcoming national regulations require “nearly zero energy buildings” which have high energy performance, significant share of renewables in covering the low energy need and harmonizing the requirement system and the cost-optimum. Known intention of MS as well as some research reports create the impression that predominant use of biomass in the forthcoming years will be the right way to fulfil the above requirements of nearly zero energy buildings. Nevertheless a brief analysis proves that these expectations are exaggerated due to either cost problem or seasonal system efficiency whilst some “secondary” environmental problem must not be forgotten.


Sign in / Sign up

Export Citation Format

Share Document