scholarly journals Rev-Changes in Primary Energy Use and CO2 Emissions—An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings

Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 978 ◽  
Author(s):  
Mattias Gustafsson ◽  
Richard Thygesen ◽  
Björn Karlsson ◽  
Louise Ödlund
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2165
Author(s):  
Sam Hamels

The European Union strives for sharp reductions in both CO2 emissions as well as primary energy use. Electricity consuming technologies are becoming increasingly important in this context, due to the ongoing electrification of transport and heating services. To correctly evaluate these technologies, conversion factors are needed—namely CO2 intensities and primary energy factors (PEFs). However, this evaluation is hindered by the unavailability of a high-quality database of conversion factor values. Ideally, such a database has a broad geographical scope, a high temporal resolution and considers cross-country exchanges of electricity as well as future evolutions in the electricity mix. In this paper, a state-of-the-art unit commitment economic dispatch model of the European electricity system is developed and a flow-tracing technique is innovatively applied to future scenarios (2025–2040)—to generate such a database and make it publicly available. Important dynamics are revealed, including an overall decrease in conversion factor values as well as considerable temporal variability at both the seasonal and hourly level. Furthermore, the importance of taking into account imports and carefully considering the calculation methodology for PEFs are both confirmed. Future estimates of the CO2 emissions and primary energy use associated with individual electrical loads can be meaningfully improved by taking into account these dynamics.


2014 ◽  
Vol 5 (2) ◽  
pp. 1143-1158 ◽  
Author(s):  
A. Jarvis ◽  
C. N. Hewitt

Abstract. We analyse the global primary energy use and total CO2 emissions time series since 1850 and show that their relative growth rates appear to exhibit periodicity with a fundamental timescale of ~60 years and with significant harmonic behaviour. Quantifying the inertia inherent in these dynamics allows forecasting of future "business as usual" energy needs and their associated CO2 emissions. Our best estimates for 2020 are 800 EJ yr−1 for global energy use and 14 Gt yr−1 for global CO2 emissions, with both being above almost all other published forecasts. This suggests the energy and total CO2 emissions landscape in 2020 may be significantly more challenging than currently envisaged.


Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


2014 ◽  
Vol 1020 ◽  
pp. 561-565 ◽  
Author(s):  
Rastislav Ingeli ◽  
Katarína Minarovičová ◽  
Miroslav Čekon

Buildings account for 40% of the primary energy use and 24%of the generation of green house gases worldwide. Therefore, a reduction of the specific energy demand of buildings and increased use of renewable energy are important measures of climate change mitigation. On the 18th of May 2010 a recast of the EPBD was approved which further clarifies the intention that buildings shall have a low energy demand. The recast of the EPBD specifies that by the end of 2020 all new buildings shall be “nearly zero-energy buildings”. A nearly zero-energy building is defined as a building with a very high energy performance and very simple shape. The current focusing on the energy efficiency of the building operation may lead to uniform cuboid architecture with heavy insulated building envelopes. The paper deals with the influence of energy concept on architectural elements (and their properties as shape, material, colour, texture etc.)


2015 ◽  
Vol 6 (1) ◽  
pp. 55-62
Author(s):  
A. Kerekes ◽  
A. Zöld

According to the Energy Performance of Buildings Directive, a significant share of the energy consumption of nearly zero energy buildings is covered from renewable energy. Biomass is considered as one of the most important renewable sources. It is promising since most of the Member states apply very low primary energy conversion factors for it. Nevertheless, the primary energy need is not as favourable as the conversion factors suggest, due to the efficiency of the biomass boilers for all over the year which depends on the changing load. Heating systems supplied with biomass boilers need buffer storage tanks which further decrease the efficiency of the system. The nearly zero energy buildings, especially those of residential use exhibit more stable load due to the lower heat loss and the overwhelming share of the net energy need of domestic hot water supply.


2019 ◽  
Vol 85 ◽  
pp. 08002
Author(s):  
Ion Murgescu ◽  
Lucia-Andreea El-Leathey ◽  
Rareş-Andrei Chihaia ◽  
Gabriela Cîrciumaru

Solar energy, today, is the leader in renewable energy and the world's increasing new energy source. In 2016, for the first time, newly installed photovoltaic capacity has increased by more than 50%, exceeding the new coal-fired power stations capacity established worldwide. At the beginning of the year, the European Parliament agreed the target that 35% renewable sources by 2030. Studies show that by 2050 approximately 45% of all the households in the EU could produce their own renewable energy and more than a third of them could be part of a renewable energy cooperative, despite the worries of the distribution companies. Furthermore, the EPBD directive (EU) - Energy Performance of Buildings pushes towards new and more performing buildings - nearly zero energy buildings (nZEB) - where energy efficiency and energy flexibility are essential to achieve the required performance targets. Nearly zero-energy buildings (NZEBs) have very high energy performance and could be achieved through the integration of renewable and decentralized energy sources, continuous grid optimization and the inclusion of increasing numbers of consumers becoming producers, so called prosumers. So far, the photovoltaic system is the single technology that can combine data from utility networks with household consumption and therefore should be considered a starting point for streamlining the electricity consumption and production which will be imposed by strict regulations.


2020 ◽  
Vol 12 (12) ◽  
pp. 5172 ◽  
Author(s):  
Yeweon Kim ◽  
Ki-Hyung Yu

This study presents a methodology and process to establish a mandatory policy of zero-energy buildings (ZEBs) in Korea. To determine the mandatory level to acquire the rating of a ZEB in Korea, this study was conducted under the assumption that the criteria of ZEB was a top 5% building considering the building’s energy-efficiency rating, which was certified through a quantitative building energy analysis. A self-sufficiency rate was also proposed to strengthen the passive standard of the buildings as well as to encourage new and renewable energy production. Accordingly, zero-energy buildings (ZEBs) in Korea are defined as having 60 kWh/(m2·yr) of non-renewable primary energy (NRPE) consumption in residential buildings and 80 kWh/(m2·yr) in non-residential buildings, and the self-reliance rate should be more than 20% of the renewable energy consumption as compared to the total energy consumption of the buildings. In addition, the mandatory installation of building energy management systems (BEMS) was promoted to investigate the energy behavior in buildings to be certified as zero-energy in the future. This study also investigated the number of ZEB certificates during the demonstration period from 2017 to 2019 to analyze the energy demand, non-renewable primary energy, renewable primary energy, and self-sufficiency rate as compared to those under the previous standards. For ZEB Grade 1 as compared to the existing building energy-efficiency rating, the sum of the NRPE decreased more than 50%, and renewable energy consumption increased more than four times.


Sign in / Sign up

Export Citation Format

Share Document