scholarly journals Finite Element Numerical Simulation Research on Fractured Horizontal Well in Stress-dependent Tight Reservoirs Based on Heat Transfer Theory

Author(s):  
Pengfei Zhang ◽  
Juhua Li
2013 ◽  
Vol 827 ◽  
pp. 203-208
Author(s):  
Yang Zhang ◽  
Yong Feng Qi

Based on transient heat transfer theory and finite element method, a 3D finite element model was created to simulate the heat transfer of the vertical U type berried pipe of the ground source heat pump system. At the same time, the pipe algorithm applied successfully in the numerical simulation of concrete temperature field was introduced. The corresponding program was written. Taking the true experiment conditions as the input data and boundary condition of the computation model, the 3D dynamic simulation of the heat transfer between the berried pipe and sandy soil was carried out. The calculated temperatures of the output water of the pipe and the measure points in soil at different times met the experiment results very well, which verified the effectiveness and the reliability of the algorithm and the model. Beneficial exploration is made for providing more detailed and accurate data for the designer.


2014 ◽  
Vol 644-650 ◽  
pp. 3379-3382
Author(s):  
Meng Xia Liu ◽  
Ju Hua Li ◽  
Lei Zhang

Conventional productivity research method of fractured horizontal wells doesn’t meticulously describe the seepage characteristics of the near wellbore area. Based on the similarity of seepage field and temperature field, and ANSYS finite element software platform, this paper conducts the simulation calculation of the fractured horizontal wells’ productivity, shows the flow of near wellbore area, and analyzes the factors affecting the productivity on fractured horizontal well by using the heat flow field model in the ANSYS software platform. The results show that the larger the angle between fractures and horizontal wells, the higher the production. It is necessary to place the fractures stagger to the greatest extent, and the fracture spacing should be extended as much as possible in actual production. This optimization design of fractured horizontal well has a certain role in guiding.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


1995 ◽  
Vol 398 ◽  
Author(s):  
A.V. Bune ◽  
D.C. Gillies ◽  
S.L. Lehoczky

ABSTRACTA numerical model of heat transfer by combined conduction, radiation and convection was developed using the FIDAP finite element code for NASA's Advanced Automated Directional Solidification Furnace (AADSF). The prediction of the temperature gradient in an ampoule with HgCdTe is a necessity for the evaluation of whether or not the temperature set points for furnace heaters and the details of cartridge design ensure optimal crystal growth conditions for this material and size of crystal. A prediction of crystal/melt interface shape and the flow patterns in HgCdTe are available using a separate complementary model.


Sign in / Sign up

Export Citation Format

Share Document