scholarly journals Effects of process parameters on the microstructure and mechanical properties of medium-carbon steels for improving high-strain rate properties

Author(s):  
Y B Song ◽  
J H Ham ◽  
H K Kim
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Pengfei Wang ◽  
Zhaodong Li ◽  
Guobiao Lin ◽  
Shitong Zhou ◽  
Caifu Yang ◽  
...  

Steels used for high-speed train wheels require a combination of high strength, toughness, and wear resistance. In 0.54% C-0.9% Si wheel steel, the addition of 0.075 or 0.12 wt % V can refine grains and increase the ferrite content and toughness, although the influence on the microstructure and toughness is complex and poorly understood. We investigated the effect of 0.03, 0.12, and 0.23 wt % V on the microstructure and mechanical properties of medium-carbon steels (0.54% C-0.9% Si) for train wheels. As the V content increased, the precipitation strengthening increased, whereas the grain refinement initially increased, and then it remained unchanged. The increase in strength and hardness was mainly due to V(C,N) precipitation strengthening. Increasing the V content to 0.12 wt % refined the austenite grain size and pearlite block size, and increased the density of high-angle ferrite boundaries and ferrite volume fraction. The grain refinement improved the impact toughness. However, the impact toughness then reduced as the V content was increased to 0.23 wt %, because grain refinement did not further increase, whereas precipitation strengthening and ferrite hardening occurred.


2013 ◽  
Vol 845 ◽  
pp. 96-100 ◽  
Author(s):  
Piotr Skubisz ◽  
Marek Packo ◽  
Katarzyna Mordalska ◽  
Tadeusz Skowronek

Results of beta forging of titanium alloy Ti-10V-2Fe-3Al and subsequent thermal treatment are presented, with analysis of the effect of the processing route on the final mechanical properties, correlated with microstructure of thermomechanically processed material. Investigation of response to high strain-rate hot-forging of microstructure and mechanical properties is focused on the effect of the strengthening mechanisms in the material after two common manners of deformation typical of that alloy. The effect of deformation conditions on final microstructure and mechanical properties was analyzed in three crucial stages of thermomechanical processing, e.i. after deformation, quenching and aging. In result, conclusions were formulated as for processing conditions promoting high strength and/or ductility.


2011 ◽  
Vol 97 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Takeshi Suzuki ◽  
Yoshiki Ono ◽  
Goro Miyamoto ◽  
Tadashi Furuhara

Sign in / Sign up

Export Citation Format

Share Document