scholarly journals Conversion of Sodium Lactate to Lactic acid and Sodium Hydroxide with Cation Exchange Membrane Electrolytic Cell

Author(s):  
R Sirisangsawang ◽  
P Samaikaew ◽  
B Chotiviriyavanich ◽  
P Kitchaiya
2018 ◽  
Vol 20 (3) ◽  
pp. 81-86 ◽  
Author(s):  
Magdalena Lech ◽  
Anna Trusek

Abstract The aim of this work was to develop the method of lactic acid (LA) separation from fermented whey. CMI-7000 Cation Exchange Membrane and AMI-7001 Anion Exchange Membrane were employed in electrodialysis process. Experiments showed that the selected membranes separated organic acids effectively (including LA) from other organic ingredients present in medium. Selecting an appropriate volume of a receiving chamber could lead to LA concentration. Moreover, membrane fouling during separation was investigated. This phenomenon is negligible which is the main advantage of this process. As it was shown during batch processes, with the voltage increase, the rate of electrodialysis increases as well. It prompts to a reduction of residence time in electrodialyzer during a continuous separation.


2021 ◽  
Vol 237 ◽  
pp. 116575
Author(s):  
Nobuyuki Tanaka ◽  
Shin-ichi Sawada ◽  
Tetsuya Yamaki ◽  
Takehide Kodaira ◽  
Takehiro Kimura ◽  
...  

Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Jimmy Aurelio Rosales-Huamani ◽  
Juan Taumaturgo Medina-Collana ◽  
Zoila Margarita Diaz-Cordova ◽  
Jorge Alberto Montaño-Pisfil

The present study aimed to evaluate the factors that influence the formation of sodium hydroxide (NaOH) by means of an electrolytic cell with ion exchange membranes. To achieve this experiment, the NaOH production cell had to be designed and built inexpensively, using graphite electrodes. The operational parameters in our study were: initial NaOH concentration, applied voltage, and temperature. All experiments were carried out using model NaCl solutions with a concentration of 40 g/L for 150 min. The results of the experiment were that the NaOH concentration, conductivity, and pH presented an increasing linear trend with the electrolysis time. Finally, it was possible to obtain the efficiency level of the electric current in our investigation, which was an average of 80.2%, that indicated good performance of the built cell.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 217
Author(s):  
AHM Golam Hyder ◽  
Brian A. Morales ◽  
Malynda A. Cappelle ◽  
Stephen J. Percival ◽  
Leo J. Small ◽  
...  

Electrodialysis (ED) desalination performance of different conventional and laboratory-scale ion exchange membranes (IEMs) has been evaluated by many researchers, but most of these studies used their own sets of experimental parameters such as feed solution compositions and concentrations, superficial velocities of the process streams (diluate, concentrate, and electrode rinse), applied electrical voltages, and types of IEMs. Thus, direct comparison of ED desalination performance of different IEMs is virtually impossible. While the use of different conventional IEMs in ED has been reported, the use of bioinspired ion exchange membrane has not been reported yet. The goal of this study was to evaluate the ED desalination performance differences between novel laboratory‑scale bioinspired IEM and conventional IEMs by determining (i) limiting current density, (ii) current density, (iii) current efficiency, (iv) salinity reduction in diluate stream, (v) normalized specific energy consumption, and (vi) water flux by osmosis as a function of (a) initial concentration of NaCl feed solution (diluate and concentrate streams), (b) superficial velocity of feed solution, and (c) applied stack voltage per cell-pair of membranes. A laboratory‑scale single stage batch-recycle electrodialysis experimental apparatus was assembled with five cell‑pairs of IEMs with an active cross-sectional area of 7.84 cm2. In this study, seven combinations of IEMs (commercial and laboratory-made) were compared: (i) Neosepta AMX/CMX, (ii) PCA PCSA/PCSK, (iii) Fujifilm Type 1 AEM/CEM, (iv) SUEZ AR204SZRA/CR67HMR, (v) Ralex AMH-PES/CMH-PES, (vi) Neosepta AMX/Bare Polycarbonate membrane (Polycarb), and (vii) Neosepta AMX/Sandia novel bioinspired cation exchange membrane (SandiaCEM). ED desalination performance with the Sandia novel bioinspired cation exchange membrane (SandiaCEM) was found to be competitive with commercial Neosepta CMX cation exchange membrane.


Sign in / Sign up

Export Citation Format

Share Document