scholarly journals Comparison of Accuracy in Extreme Learning Machine Based on Hidden Node Structure Variation for Lung Cancer Classification

Author(s):  
S Tandungan ◽  
Indrabayu ◽  
I Nurtanio

The major issue in the development of pattern recognition towards lung cancer classification is the formation of feature extraction process and the proposed classifier model. In the proposed approach, a self-regulated gray wolf optimizer based extreme learning machine classifier is proposed to carry out lung cancer classification along with the statistical feature extraction methods. Simulation shows that the proposed approach works well and produces higher classification accuracy than the conventional classifier methods. The modeled SelfRegulated Gray Wolf Optimizer (SRGWO) and Extreme Learning Machine (ELM) along with feature and segmentation process shows highest improvement in comparison with the other existing literature studies in neural networks. In particular, the significant finding of this work employing ELM, SRGWO and feature analysis validates the correlation of Computed Tomography (CT) measures as well as classification pathological parameters. Thus, the proposed SRGWO and ELM classifier is developed in the present approach for lung cancer classification of CT images reducing the computational cost and time of all the earlier classifiers and as well increasing the classification accuracy. On performing trial runs for the proposed SRGWO – ELM to compute the classification results for the considered real time and Lung Image Database Consortium (LIDC) lung images, it has been noted that at certain trials, the extreme learning machine neuronal classifier is noted to get stuck up with the local minima problem and it is necessary to restart the generation process to achieve classification solutions.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 523-534
Author(s):  
M. Yasodha ◽  
P. Ponmuthuramalingam

In the present scenario, one of the dangerous disease is cancer. It spreads through blood or lymph to other location of the body, it is a set of cells display uncontrolled growth, attack and destroy nearby tissues, and occasionally metastasis. In cancer diagnosis and molecular biology, a utilized effective tool is DNA microarrays. The dominance of this technique is recognized, so several open doubt arise regarding proper examination of microarray data. In the field of medical sciences, multicategory cancer classification plays very important role. The need for cancer classification has become essential because the number of cancer sufferers is increasing. In this research work, to overcome problems of multicategory cancer classification an improved Extreme Learning Machine (ELM) classifier is used. It rectify problems faced by iterative learning methods such as local minima, improper learning rate and over fitting and the training completes with high speed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yanpeng Qu ◽  
Ansheng Deng

Many strategies have been exploited for the task of reinforcing the effectiveness and efficiency of extreme learning machine (ELM), from both methodology and structure perspectives. By activating all the hidden nodes with different degrees, local coupled extreme learning machine (LC-ELM) is capable of decoupling the link architecture between the input layer and the hidden layer in ELM. Such activated degrees are jointly determined by the associated addresses and fuzzy membership functions assigned to the hidden nodes. In order to further refine the weight searching space of LC-ELM, this paper implements an optimisation, entitled evolutionary local coupled extreme learning machine (ELC-ELM). This method makes use of the differential evolutionary (DE) algorithm to optimise the hidden node addresses and the radiuses of the fuzzy membership functions, until the qualified fitness or the maximum iteration step is reached. The efficacy of the presented work is verified through systematic simulated experimentations in both regression and classification applications. Experimental results demonstrate that the proposed technique outperforms three ELM alternatives, namely, the classical ELM, LC-ELM, and OSFuzzyELM, according to a series of reliable performances.


2006 ◽  
Vol 16 (01) ◽  
pp. 39-46 ◽  
Author(s):  
FEI HAN ◽  
DE-SHUANG HUANG ◽  
ZHI-HUA ZHU ◽  
TIE-HUA RONG

In this paper, a new effective model is proposed to forecast how long the postoperative patients suffered from non-small cell lung cancer will survive. The new effective model which is based on the extreme learning machine (ELM) and principal component analysis (PCA) can forecast successfully the postoperative patients' survival time. The new model obtains better prediction accuracy and faster convergence rate which the model using backpropagation (BP) algorithm and the Levenberg-Marquardt (LM) algorithm to forecast the postoperative patients' survival time can not achieve. Finally, simulation results are given to verify the efficiency and effectiveness of our proposed new model.


Sign in / Sign up

Export Citation Format

Share Document