scholarly journals Syngas software for biomass gasification process

Author(s):  
S Saleh ◽  
N A F A Samad
2021 ◽  
Author(s):  
Ibtihaj Khurram Faridi ◽  
Evangelos Tsotsas ◽  
Wolfram Heineken ◽  
Marcus Koegler ◽  
Abdolreza Kharaghani

Eng ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 2-30
Author(s):  
Ioannis Voultsos ◽  
Dimitrios Katsourinis ◽  
Dimitrios Giannopoulos ◽  
Maria Founti

The energetic and environmental performance of a cogeneration biomass gasification plant, situated in Thessaly, Greece is evaluated via a methodology combining process simulation and Life Cycle Assessment (LCA). Initially, the gasification process of the most common agricultural residues found in the Thessaly region is simulated to establish the effect of technical parameters such as gasification temperature, equivalence ratio and raw biomass moisture content. It is shown that a maximum gasification efficiency of approximately 70% can be reached for all feedstock types. Lower efficiency values are associated with increased raw biomass moisture content. Next, the gasifier model is up-scaled, achieving the operation of a 1 MWel and 2.25 MWth cogeneration plant. The Life Cycle Assessment of the operation of the cogeneration unit is conducted using as input the performance data from the process simulation. Global Warming Potential and the Cumulative Demand of Non-Renewable Fossil Energy results suggest that the component which had the major share in both impact categories is the self-consumption of electricity of the plant. Finally, the key conclusion of the present study is the quantification of carbon dioxide mitigation and non-renewable energy savings by comparing the biomass cogeneration unit operation with conventional reference cases.


2010 ◽  
Vol 105-106 ◽  
pp. 709-712 ◽  
Author(s):  
Zhi Guo Tang ◽  
P.Y. Ma ◽  
J.P. Cheng ◽  
Y.L. Li ◽  
Q.Z. Lin

Hydrogen from biomass gasification is reviewed as one of the promising clean energies approaches in the future for fuel cell. However, the syngas from biomass gasification usually contains a certain amount of tar, which could not only decrease the efficiency of gasification process and hydrogen production, but also condense as a dense mixture and impose a series of serious problems. So “Excess Enthalpy Gasification (EEG)” is put forward and applied into biomass gasification and a novel biomass gasifier is presented for the purpose of tar-free and hydrogen-rich syngas in this work. The structure characteristic of the gasifier and tar conversion characteristic are analyzed detailedly to prove the feasibility and excellence performance for producing tar-free and hydrogen-rich syngas from biomass gasification.


2013 ◽  
Vol 38 (30) ◽  
pp. 13282-13292 ◽  
Author(s):  
A. D'Orazio ◽  
A. Di Carlo ◽  
N. Dionisi ◽  
A. Dell'Era ◽  
F. Orecchini

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
L. Damiani ◽  
A. Trucco

This paper presents a modified equilibrium simulation model for biomass gasification performance prediction. The model, implemented in the MATLAB-SIMULINK® environment, is able to calculate the reactor main operating parameters such as reaction temperature, gas composition, gas flow rate and solid product (typically charcoal). The comparison of model output with experimental data puts in evidence the insufficient precision of equilibrium models due to their incapability of taking into account the nonequilibrium effects always present in the gasification process. To obtain a better prediction of measured values, the pure equilibrium model has been modified on the basis of literature experimental data, introducing semi-empirical relations with the aim to consider the most meaningful effects of nonequilibrium. The results demonstrate that this modification leads to an increased precision of the model in reproducing experimental data.


2018 ◽  
Vol 32 (2) ◽  
pp. 1703-1710 ◽  
Author(s):  
Jun-fei Jiang ◽  
Lin Lang ◽  
Le-teng Lin ◽  
Hua-cai Liu ◽  
Xiu-li Yin ◽  
...  

2015 ◽  
Author(s):  
Roberto José Páez Salgado ◽  
Luisa Fernanda Marzola Atencia ◽  
Jorge Mario Mendoza Fandiño ◽  
Adrián Enrique Ávila Gómez ◽  
Juan Fernando Arango Meneses

This research is based on obtaining a mathematical model to determine the efficiency of generating a generator coupled to a biomass gasification process. To do this, it is initially simulated internal combustion engine at the Aspen hysys® licensed software, in order to obtain the shaft work and a representative model of the generation efficiency of the motor; according to the characteristics of the power cycle and product gas from the gasification of agricultural biomass prevailing in the Department of Córdoba – Colombia: Cotton waste (Gossypium hirsutum), Rice husk (Oryza sativa), Sesame stalk (Sesamum indicum), Corn cob (Zea mays) and Coconut fiber (Cocos nucifera). Subsequently, the generator efficiency is evaluated by the electric power generation simulation phase in the Simulink Toolbox of the MATLAB® software. The deterministic mathematical models resulting from the simulations above are adjusted by statistical techniques to experimental data and a regression model that assesses the overall system efficiency is obtained. Such efficiencies range from 16 to 20%. Therefore it is concluded that the use of representative crops biomass product’s calorific values in the Department of Córdoba -Colombia, are profitable for electric power generation. On the other hand, it is important to note that experimental data’s reliable and monitored way acquisition was performed through the SCADA developing; it allowed real time process variables’ intervention presentation.


Sign in / Sign up

Export Citation Format

Share Document