scholarly journals The effect of effective microorganisms-4 (em-4) on biogas yield in solid-state anaerobic digestion of corn stover

Author(s):  
L M Shitophyta ◽  
G I Budiarti ◽  
Y E Nugroho ◽  
M Hanafi
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Lukhi Mulia Shitophyta ◽  
Muhammad Hanafi ◽  
Yusuf Eko Nugroho

The shortage of fossil fuel can be minimized by developing renewable energies such as biogas. The raw material of biogas can be derived from corn stover. Biogas was produced under solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD). The objectives of this study were to compare the biogas yield and analyze the pH value and VS degradation. The results reported that the SS-AD generated a higher biogas yield than L-AD. SS-AD could improve the biogas yield of 71%. Both SS-AD and L-AD had a higher final pH than the initial pH. Moreover, the VS degradation was proportionate to the biogas yield. The highest VS reduction was achieved on SS-AD. Keywords: anaerobic digestion, biogas, liquid state, solid state, volatile solid, renewable energy


2020 ◽  
Vol 4 (1) ◽  
pp. 44
Author(s):  
Lukhi Mulia Shitophyta ◽  
Gita Indah Budiarti ◽  
Yusuf Eko Nugroho ◽  
Dika Fajariyanto

Biogas telah menjadi bahan bakar alternatif untuk mengurangi kelangkaan bahan bakar fosil. Biogas dapat dihasilkan dari limbah makanan seperti tongkol jagung. Tongkol jagung merupakan biomassa lignoselulosa dan mengandung kandungan total solid (TS) >15%. Produksi biogas dilakukan dengan solid-state anaerobic digestion dengan penambahan co-digestion limbah makanan. Co-digestion berfungsi untuk membantu proses pemecahan tongkol jagung. Tujuan penelitian ini adalah untuk mengkaji pengaruh persentase limbah makanan, reduksi volatile solid (VS), dan model kinetika produksi biogas dari tongkol jagung. Hasil peneltiian menunjukkan bahwa limbah makanan berpengaruh signifikan terhadap yield biogas (p < 0,05). Yield biogas tertinggi sebesar 584,49 mL g-1 VS-1 dan reduksi VS tertinggi sebesar 40% diperoleh pada limbah makanan 20%. Model kinetika produksi biogas dari tongkol jagung dan limbah makanan mengikuti model kinetika orde pertama.Biogas has become an alternative fuel to reduce the lack of fossil fuel. Biogas can be produced from organic wastes such as corn stover. Corn stover is a typical lignocellulosic biomass and contains a total solid (TS) content higher of 15%. Biogas production was conducted by solid-state anaerobic digestion with addition co-digestion of food waste. Co-digestion is useful to help the digestion of corn stover. The purposes of this study were to investigate the effect of the percentage of food waste, volatile solid (VS) reduction, and kinetic model on biogas production from corn stover. Results showed that food waste had a significant effect on biogas yield (p < 0.05). The highest biogas yield of 584.49 mL g-1 VS-1 and the highest VS reduction of 40% was obtained at food waste of 20%. The kinetic model of biogas production from corn stover and food waste followed the first-order kinetic model.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2015 ◽  
Vol 175 ◽  
pp. 430-435 ◽  
Author(s):  
Jiying Zhu ◽  
Liangcheng Yang ◽  
Yebo Li

2014 ◽  
Vol 28 (6) ◽  
pp. 3759-3765 ◽  
Author(s):  
Yeqing Li ◽  
Ruihong Zhang ◽  
Yanfeng He ◽  
Xiaoying Liu ◽  
Chang Chen ◽  
...  

2011 ◽  
Vol 54 (4) ◽  
pp. 1415-1421 ◽  
Author(s):  
Y. Li ◽  
J. Zhu ◽  
C. Wan ◽  
S. Y. Park

Sign in / Sign up

Export Citation Format

Share Document