scholarly journals Optimization of Two-Dimensional Finite Element on Primary Bone Type-7 Fracture Model

Author(s):  
N N Mansor ◽  
M I Ishak ◽  
R Daud
Author(s):  
L F Campanile ◽  
R Jähne ◽  
A Hasse

Classical beam models do not account for partial restraint of anticlastic bending and are therefore inherently inaccurate. This article proposes a modification of the exact Bernoulli–Euler equation which allows for an exact prediction of the beam's deflection without the need of two-dimensional finite element calculations. This approach offers a substantial reduction in the computational effort, especially when coupled with a fast-solving schema like the circle-arc method. Besides the description of the new method and its validation, this article offers an insight into the somewhat disregarded topic of anticlastic bending by a short review of the published theories and a selection of representative numerical results.


1994 ◽  
Vol 21 (3) ◽  
pp. 471-489 ◽  
Author(s):  
Paul Boudreau ◽  
Michel Leclerc ◽  
Guy R. Fortin

The macrophytes (aquatic plants) can have a substantial effect on the hydrodynamics of some watercourses. A mathematical formulation for the resistance effect of macrophytes on the current is inserted in a two-dimensional finite element hydrodynamic model. The method introduced herein allows to take into account the morphology, the density, and the growth curve of the different species of macrophytes present in the river. The Lake Saint-Pierre between Sorel and Trois-Rivières (Québec, Canada) in the St. Lawrence River is used to demonstrate the approach. The mathematical aspect of the model is first briefly presented. The field surveys of macrophytes and some other data sets used with the model are then analyzed. Finally, after the calibration–validation step, which insures the good behavior of the model, some results are presented to show the effect of the macrophytes on the flow structure. Key words: hydrodynamics, aquatic plants, St. Lawrence River, Lake Saint-Pierre, two-dimensional modelling, simulation, finite element method, Manning's coefficient.


Sign in / Sign up

Export Citation Format

Share Document