scholarly journals Monitoring the behavior of a high-rise building under wind loads

Author(s):  
V A Lapin ◽  
S Y Yerzhanov ◽  
N K Makish
2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


1996 ◽  
Vol 1996 (68) ◽  
pp. 15-24
Author(s):  
Kazuo ONTAKE ◽  
Yoshihiro MATAKI

2019 ◽  
Vol 145 (1) ◽  
pp. 04018232 ◽  
Author(s):  
Alireza Mohammadi ◽  
Atorod Azizinamini ◽  
Lawrence Griffis ◽  
Peter Irwin

Author(s):  
M. Ricci ◽  
L. Patruno ◽  
I. Kalkman ◽  
S. de Miranda ◽  
B. Blocken

2013 ◽  
Vol 281 ◽  
pp. 639-644 ◽  
Author(s):  
V.N. Alekhin ◽  
A.A. Antipin ◽  
S.N. Gorodilov

In the paper the wind loads on 52 flore building "Iset Tower" are investigated. Distribution of pressure to the building and velocities are presented. Performed calculations show qualitative agreement with experimental results. According to the results of numerical simulation of wind effects it can be concluded that both aerodynamic experiments and numerical analysis are needed in the design. If there is coincidence of experimental and numerical results then they can be used to calculate the skeleton of the building.


Author(s):  
Roy O. Ononye ◽  
Kevin C. Okolie ◽  
F. O. Ezeokoli ◽  
S. C. Ugochukwu

The importance of wind induced vibration is a key factor in the analysis, design and construction of high-rise building structures. Owing to scarce land resources, urbanization and ever-growing demand for accommodation is leading developers into sloping (hilly) grounds which in turn requires researches on the structural equilibrium of these structures. This study draws to mind the requirements of a fast-growing city of the Federal Capital Territory, FCT, Abuja considering her vast undulating planes and plateaus, high altitudes and windspeeds (50 m/s). Here therein, lies a comparative study of different types of building configurations and responses for sloping grounds using approaches form seismic analyses as a background to achieving set objectives. The study therefore, attempts the application of a commonly used method (Static Wind Analysis, SWA) for analysis of wind loads on structures and also understudying the outcomes of applying the same loads using dynamic method (Response Spectrum Analysis, RSA). STAAD Pro V8i software was used to synthesize both analyses using the ASCE 705 code (wind speed-up over Hills) on 40 models for each analysis method for a 3x5 planar building configurations (G+6, G+8, G+12 and G+18) on grounds (0°, 6°, 14°, 18°, and 27°). The findings confirmed the complexities of sloping ground buildings with a greater chance of vibration and sway for SWA than in RSA. It was concluded, that the Stepback-setback (STPB-SETB) frames were better configured to combat wind loads on sloping grounds for both analyses. Recommendations includes, prioritizing the construction industry, collaboration with international bodies on High-rise development, developing a data base and wind testing facilities.


Sign in / Sign up

Export Citation Format

Share Document