scholarly journals Post-fire resistance of concrete filled steel tube columns

Author(s):  
Ihssan A Alhatmey ◽  
Talha Ekmekyapar ◽  
Nadheer S Ayoob
2019 ◽  
Vol 223 ◽  
pp. 110994 ◽  
Author(s):  
Min Yu ◽  
Tan Wang ◽  
Weijun Huang ◽  
Huanxin Yuan ◽  
Jianqiao Ye

2014 ◽  
Vol 1065-1069 ◽  
pp. 1349-1353
Author(s):  
Zhen Kai Duan ◽  
Rui Wang

Concrete-Filled Steel Tube with high capacity, good ductility and toughness, convenient construction, good fire resistance and other advantages. Currently[1] . Concrete-Filled Steel Tube structure has been widely used in the basic components and the overall structure of behavioral research has made many achievements. There are many advantages of concrete pipe above, but it also has fatal flaws, Stainless steel steel that is the difference[2]. The stainless steel has a beautiful appearance, durability, corrosion resistance, low maintenance costs, good fire resistance and other advantages. New stainless steel pipe concrete structure has both ordinary steel concrete good mechanical properties and excellent durability of stainless steel, can be widely used in buildings and bridges of the marine environment as well as some of the high durability and aesthetic requirements important building structures. Based on the outer stainless steel hollow sandwich - the carbon steel pipe shaft of light pressure test concrete results of load and displacement of the structure, variation of load and strain, and the impact of the empty heart of these parameters.


2012 ◽  
Vol 174-177 ◽  
pp. 881-884 ◽  
Author(s):  
Xiao Liu ◽  
Lei Zhao

Recycled concrete was waste concrete re-processing to restore the original performance, so that the waste of resources to re-use. It’s important to study the recycled concrete fire resistance, by analyzing the frequency of the existing building fire, the extent of waste concrete increasing year by year. Through the analysis of recycled concrete as structural components in the deficiencies of strength, seismic and fire resistance, indicates the importance of anti - fire properties of recycled concrete - filled steel tube.


2018 ◽  
Vol 80 (6) ◽  
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab. Kadir ◽  
...  

The use of concrete filled steel tube (CFST) columns offers an alternative for providing the required fire resistance and load bearing capacity, making its use in medium and high rise structures are highly popular. This paper aims to review the previous studies on CFST column under fire. The standards or codes of practice used in fire resistance designs have been highlighted. The design of the CFST column is summarised with previous investigations on experiments and numerical modelling at ambient temperature and elevated temperature. Different conclusions were drawn depending on the material’s properties, considered parameters and the method used for the investigations. Outer diameter or width of the steel tube, steel tube thickness, concrete grade, column length, and eccentricity of loadings are among the parameters that affects the structural behaviour of CFST columns under fire. Several numerical analyses software were adequately used for simulating the behaviour of CFST columns at elevated temperatures, and validated using experimental results. Furthermore, the advantages of using the fire resistance design approaches on CFST columns filled with lightweight foamed concrete is highlighted. In conclusion, there is the need for more studies on standard fire tests of CFST column filled with light weight foamed concrete which is not covered in the current design guide.


2021 ◽  
pp. 136943322110015
Author(s):  
Lei Xu ◽  
Yan-Hong Bao

To reveal the temperature characteristics and mechanical properties of frame structures with concrete filled steel tube reinforced concrete (CFSTRC) columns under fire, the fire resistance of four planar frames consisting of CFSTRC columns and reinforced concrete (RC) beams subjected to ISO-834 standard fire was tested in this study. The test parameters included the column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio. In the test, the temperatures of the column, beam, and slab cross-sections in the joint and nonjoint zones were measured, and the fire resistance, beam and column deformation curves, and failure modes of the frame were investigated. The experimental results showed that the concrete volume was the main factor affecting the temperature distribution on each typical cross-section of the frame: the temperatures at the measuring points of the beam and column in the joint zone were significantly lower than the temperatures at the corresponding points in the nonjoint zone, and the concrete outside the steel tube significantly slowed the propagation of temperature to the steel tube and its concrete core. Hence, there was only a small loss of the bearing capacity of steel tube and the core concrete inside the steel tube. The column fire load ratio, beam fire load ratio, and beam-to-column linear stiffness ratio have obvious influences on the fire resistance: the larger the column fire load ratio or beam fire load ratio, the smaller the fire resistance; and the larger the beam-to-column linear stiffness ratio, the larger the fire resistance.


Sign in / Sign up

Export Citation Format

Share Document