Effects of the vessel bottom wall on a particle rising in an electrically conducting fluid under a strong vertical magnetic field

2019 ◽  
Vol 51 (2) ◽  
pp. 025501
Author(s):  
Kazuyuki Ueno ◽  
Sachi Harada ◽  
Masahide Watabe
2008 ◽  
Vol 15 (sup1) ◽  
pp. 77-90 ◽  
Author(s):  
Tasawar Hayat ◽  
Herman Mambili-Mamboundou ◽  
Ebrahim Momoniat ◽  
Fazal M Mahomed

2008 ◽  
Vol 130 (5) ◽  
Author(s):  
B. S. Bhadauria

The effect of temperature modulation on the onset of thermal convection in an electrically conducting fluid-saturated-porous medium, heated from below, has been studied using linear stability analysis. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small. The porous medium is confined between two horizontal walls and subjected to a vertical magnetic field; flow in porous medium is characterized by Brinkman–Darcy model. Considering only infinitesimal disturbances, and using perturbation procedure, the combined effect of temperature modulation and vertical magnetic field on thermal instability has been studied. The correction in the critical Rayleigh number is calculated as a function of frequency of modulation, Darcy number, Darcy Chandrasekhar number, magnetic Prandtl number, and the nondimensional group number χ. The influence of the magnetic field is found to be stabilizing. Furthermore, it is also found that the onset of convection can be advanced or delayed by proper tuning of the frequency of modulation. The results of the present model have been compared with that of Darcy model.


Sign in / Sign up

Export Citation Format

Share Document