Probing vortex beams based on Talbot effect with two overlapping gratings

2021 ◽  
Author(s):  
Sitti Buathong ◽  
Sorakrai Srisuphaphon ◽  
Sarayut Deachapunya

Abstract In a prior report the optical vortex was characterized using the near-field Talbot effect [1, 2]. This near-field technique can resolve both order and charge of the orbital angular momentum state of the vortex beam. We have proposed before that a small open fraction of the grating in the Talbot configuration can improve the image contrast [3]. In this study, we combine these previously reported techniques, i.e. the Talbot effect for probing an optical vortex and overlapping gratings to manipulate the open fraction. Both theoretical simulation and experimental demonstration are presented here. We believe that our technique can be an alternative method for optical vortex imaging, and could be useful in optical applications.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


2014 ◽  
Author(s):  
Konstantin Mishchik ◽  
Yannick Petit ◽  
Etienne Brasselet ◽  
Inka Manek-Hönninger ◽  
Nicolas Marquestaut ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 107339
Author(s):  
Ke Li ◽  
Kaifei Tang ◽  
Da Lin ◽  
Jing Wang ◽  
Bingxuan Li ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Mehul Malik ◽  
Mohammad Mirhosseini ◽  
Martin P. J. Lavery ◽  
Jonathan Leach ◽  
Miles J. Padgett ◽  
...  

Author(s):  
Wenjuan Du ◽  
Zhilang Lou ◽  
Xuesong Chen ◽  
Long Chen ◽  
Dongliang Tang

Abstract Metasurfaces have versatile manipulation capabilities in the optical field and provide the possibility of building a compact optical device with various complex functions. They have been regarded as ideal candidates to construct a miniaturized optical system with high density and multi-channel information. In this work, reflective all-metallic multifunctional metasurfaces consisting of aluminum nanorods are designed by simultaneously realizing the near-filed display and three-dimensional (3D) holography. Specifically, in the proposed design, each nanorod acts as a complex amplitude modulator to provide continuous amplitude control and binary phase control. By carefully optimizing the orientations of nanorods, a multifunctional metasurface can be designed to display a near-field grayscale pattern and far-field 3D images simultaneously. Numerical results by a full-wave simulation validate the good performance of the proposed design. The proposed method could provide more degree of freedom to designs of lightweight devices, which could be employed in optical applications, such as the virtual or augmented reality display and anti-counterfeit technology.


2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Zhirong Liu ◽  
Kelin Huang ◽  
Anlian Yang ◽  
Xun Wang ◽  
Philip H. Jones

In this paper, a recently-proposed pure-phase optical element, the fractal conical lens (FCL), is introduced for the regulation of strongly-focused circularly-polarized optical vortices in a high numerical aperture (NA) optical system. Strong focusing characteristics of circularly polarized optical vortices through a high NA system in cases with and without a FCL are investigated comparatively. Moreover, the conversion between spin angular momentum (SAM) and orbital angular momentum (OAM) of the focused optical vortex in the focal vicinity is also analyzed. Results revealed that a FCL of different stage S could significantly regulate the distributions of tight focusing intensity and angular momentum of the circularly polarized optical vortex. The interesting results obtained here may be advantageous when using a FCL to shape vortex beams or utilizing circularly polarized vortex beams to exploit new-type optical tweezers.


2020 ◽  
Vol 475 ◽  
pp. 126268
Author(s):  
Sujai Matta ◽  
Pramitha Vayalamkuzhi ◽  
Nirmal K. Viswanathan

2008 ◽  
Vol 25 (3) ◽  
pp. 823 ◽  
Author(s):  
John Vickers ◽  
Matt Burch ◽  
Reeta Vyas ◽  
Surendra Singh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document