scholarly journals DISCOVERY OF A 1.6 YEAR MAGNETIC ACTIVITY CYCLE IN THE EXOPLANET HOST STAR ι HOROLOGII

2010 ◽  
Vol 723 (2) ◽  
pp. L213-L217 ◽  
Author(s):  
T. S. Metcalfe ◽  
S. Basu ◽  
T. J. Henry ◽  
D. R. Soderblom ◽  
P. G. Judge ◽  
...  
1998 ◽  
Vol 11 (1) ◽  
pp. 370-370
Author(s):  
C.-H. Kim ◽  
J.H. Jeong ◽  
O. Demircan ◽  
Z. Muyesseroulu ◽  
E. Budding

A total of eighteen times of minimum lights for YY Eri were determined from relatively new or unpublished photoelectric observations collected from Korea and Turkey. All minima available to us were intensively analyzed to deduce the character of period variation of YY Eri. It is either formed by a sinusoidal variation superimposed on an upward parabola, or a set of abrupt changes. The abrupt changes appeared to have alternatively occured in the pattern of two increases following one decrease, which may be an indication of sinusoidal variations rather than real sudden changes of period. Upward parabolic variation can be due to a secular period increase caused by mass transfer from less massive to more massive component. The sinusoidal character can arise from a third body or from a strong magnetic activity cycle. Long term sinusoidal light level variation in the light curves supports the cyclic magnetic activity effect on the orbital period. However, the third body hypothesis can not be ruled out by the present data.


2019 ◽  
Vol 626 ◽  
pp. A38 ◽  
Author(s):  
A. F. Lanza ◽  
Y. Netto ◽  
A. S. Bonomo ◽  
H. Parviainen ◽  
A. Valio ◽  
...  

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars. Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 accompanied by a transiting hot Jupiter. Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude ΔΩ/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. Conclusion. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.


1998 ◽  
Vol 498 (1) ◽  
pp. L51-L54 ◽  
Author(s):  
Axel Brandenburg ◽  
Steven H. Saar ◽  
Christen R. Turpin

2019 ◽  
Vol 490 (1) ◽  
pp. L86-L90 ◽  
Author(s):  
Jhon Yana Galarza ◽  
Jorge Meléndez ◽  
Diego Lorenzo-Oliveira ◽  
Adriana Valio ◽  
Henrique Reggiani ◽  
...  

ABSTRACT Spectroscopic equilibrium allows us to obtain precise stellar parameters in Sun-like stars. It relies on the assumption of the iron excitation and ionization equilibrium. However, several works suggest that magnetic activity may affect chemical abundances of young active stars, calling into question the validity of this widely used method. We have tested, for the first time, variations in stellar parameters and chemical abundances for the young solar twin HIP 36515 (∼0.4 Gyr), along its activity cycle. This star has stellar parameters very well established in the literature and we estimated its activity cycle in ∼6 yr. Using HARPS spectra with high resolving power (115 000) and signal-to-noise ratio (∼270), the stellar parameters of six different epochs in the cycle were estimated. We found that the stellar activity is strongly correlated with the effective temperature, metallicity, and microturbulence velocity. The possibility of changes in the Li i 6707.8 Å line due to flares and star-spots was also investigated. Although the core of the line profile shows some variations with the stellar cycle, it is compensated by changes in the effective temperature, resulting in a non-variation of the Li abundance.


2011 ◽  
Vol 7 (S286) ◽  
pp. 307-316
Author(s):  
Adriana Valio

AbstractSince Galileo, for four hundred years, dark spots have been observed systematically on the surface of the Sun. The monitoring of the sunspot number has shown that their number varies periodically every 11 years. This is the well-known solar activity cycle that is caused by the periodic changes of the magnetic field of the Sun. Not only do spots vary in number on a timescale of a decade, but the total luminosity and other signatures of activity such as flares and coronal mass ejections also increase and decrease with the 11-year cycle. Still unexplained to the present date are periods of decades with almost an absence of activity, where the best known example is the Maunder Minimum. Other stars also exhibit signs of cyclic activity, however the level of activity is usually thousand times higher than the solar one. Obviously, this is due to the difficulty of observing activity at the solar level on most stars. Presently, a method has been developed to detect and study individual solar like spots on the surface of planet-harbouring stars. As the planet eclipses dark patches on the surface of the star, a detectable signature can be observed in the light curve of the star during the transit. The study of a different variety of stars allows for a better understanding of magnetic cycles and the evolution of stars.


2018 ◽  
Vol 621 ◽  
pp. A21 ◽  
Author(s):  
Timo Reinhold ◽  
Keaton J. Bell ◽  
James Kuszlewicz ◽  
Saskia Hekker ◽  
Alexander I. Shapiro

Context. The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes magnetic activity signatures such as dark spots and bright faculae. Having knowledge about the dominant source of surface activity might allow us to draw conclusions about the stellar age and magnetic field topology, and to put the solar cycle in context. Aims. We investigate the underlying process that causes magnetic activity by studying the appearance of activity signatures in contemporaneous photometric and chromospheric time series. Methods. Lomb-Scargle periodograms are used to search for cycle periods present in the photometric and chromospheric time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase difference between the two time series are obtained by fitting both time series simultaneously using the same cycle period. Results. We find cycle periods in 27 of the 30 stars in our sample. The phase difference between the two time series reveals that the variability in fast-rotating active stars is usually in anti-phase, while the variability of slowly rotating inactive stars is in phase. The photometric cycle amplitudes are on average six times larger for the active stars. The phase and amplitude information demonstrates that active stars are dominated by dark spots, whereas less-active stars are dominated by bright faculae. We find the transition from spot to faculae domination to be at the Vaughan–Preston gap, and around a Rossby number equal to one. Conclusions. We conclude that faculae are the dominant ingredient of stellar activity cycles at ages ≳2.55 Gyr. The data further suggest that the Vaughan–Preston gap cannot explain the previously detected dearth of Kepler rotation periods between 15 and 25 days. Nevertheless, our results led us to propose an explanation for the lack of rotation periods to be due to the non-detection of periodicity caused by the cancelation of dark spots and bright faculae at ∼800 Myr.


Science ◽  
2010 ◽  
Vol 329 (5995) ◽  
pp. 1032-1032 ◽  
Author(s):  
R. A. Garcia ◽  
S. Mathur ◽  
D. Salabert ◽  
J. Ballot ◽  
C. Regulo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document