scholarly journals A 30 kpc CHAIN OF “BEADS ON A STRING” STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

2014 ◽  
Vol 790 (2) ◽  
pp. L26 ◽  
Author(s):  
Grant R. Tremblay ◽  
Michael D. Gladders ◽  
Stefi A. Baum ◽  
Christopher P. O'Dea ◽  
Matthew B. Bayliss ◽  
...  
2020 ◽  
Vol 15 (S359) ◽  
pp. 170-172
Author(s):  
Rosemary T. Coogan ◽  
E. Daddi ◽  
R. Gobat ◽  
M. T. Sargent

AbstractThis work focuses on understanding the formation of the first massive, passive galaxies in clusters, as a first step to the development of environmental trends seen at low redshift. Cl J1449 + 0856 is an excellent case to study this - a galaxy cluster at redshift z = 1.99 that already shows evidence of a virialised atmosphere. Here we highlight two recent results: the discovery of merger-driven star formation and highly-excited molecular gas in galaxies at the core of Cl J1449, along with the lowest-mass Sunyaev-Zel’dovich detection to date.


Author(s):  
Kevin Sebesta ◽  
Liliya L R Williams ◽  
Jori Liesenborgs ◽  
Elinor Medezinski ◽  
Nobuhiro Okabe

Abstract Abell 2744, a massive Hubble Frontier Fields merging galaxy cluster with many multiple images in the core has been the subject of many lens inversions using different methods. While most existing studies compare various inversion methods, we focus on a comparison of reconstructions that use different input lensing data. Since the quantity and quality of lensing data is constantly improving, it makes sense to ask if the estimated uncertainties are robust against changes in the data. We address this question using free-form Grale, which takes only image information as input, and nothing pertaining to cluster galaxies. We reconstruct Abell 2744 using two sets of strong lensing data from the Hubble Frontier Fields community. Our first and second reconstructions use 55 and 91 images, respectively, and only 10 of the 91 images have the same positions and redshifts as in the first reconstruction. Comparison of the two mass maps shows that Grale uncertainties are robust against these changes, as well as small modifications in the inversion routine. Additionally, applying the methods used in Sebesta et al. (2016) for MACS J0416, we conclude that, in a statistical sense, light follows mass in Abell 2744, with brighter galaxies clustering stronger with the recovered mass than the fainter ones. We also show that the faintest galaxies are anti-correlated with mass, which is likely the result of light contamination from bright galaxies, and lensing magnification bias acting on galaxies background to the cluster.


2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


2012 ◽  
Vol 8 (S295) ◽  
pp. 354-357
Author(s):  
Peter H. Johansson

AbstractWe demonstrate that massive simulated galaxies assemble in two phases, with the initial growth dominated by compact in situ star formation, whereas the late growth is dominated by accretion of old stars formed in subunits outside the main galaxy. We also show that 1) gravitational feedback strongly suppresses late star formation in massive galaxies contributing to the observed galaxy colour bimodality that 2) the observed galaxy downsizing can be explained naturally in the two-phased model and finally that 3) the details of the assembly histories of massive galaxies are directly connected to their observed kinematic properties.


2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2006 ◽  
Vol 636 (1) ◽  
pp. 115-133 ◽  
Author(s):  
A. Pasquali ◽  
I. Ferreras ◽  
N. Panagia ◽  
E. Daddi ◽  
S. Malhotra ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2018 ◽  
Vol 866 (1) ◽  
pp. 70 ◽  
Author(s):  
Ya-Ping Li ◽  
Feng Yuan ◽  
Houjun Mo ◽  
Doosoo Yoon ◽  
Zhaoming Gan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document