Selective binding of proteins on functional nanoparticles via reverse charge parity model: anin vitrostudy

2014 ◽  
Vol 1 (1) ◽  
pp. 015017 ◽  
Author(s):  
Goutam Ghosh ◽  
Lata Panicker ◽  
K C Barick
2019 ◽  
Author(s):  
Riley J. Petersen ◽  
Brett J. Rozeboom ◽  
Shalisa Oburn ◽  
Nolan Blythe ◽  
Tanner Rathje ◽  
...  

<div>We report the synthesis of a novel macrocyclic host molecule that forms in a single step from commercially available starting materials. The core of the macrocycle backbone possesses two quinone rings and, thus, is redox-active. Host-guest binding involving the clip-shaped cavity indicates selective binding of pyridine <i>N</i>-oxides based of the electron density of and steric bulk of the anionic oxygen.</div>


2018 ◽  
Vol 25 (25) ◽  
pp. 2987-3000 ◽  
Author(s):  
Linying Liu ◽  
Xiaoshuang Li ◽  
Lei Chen ◽  
Xin Zhang

Nanomedicine is widely developed in recent years. In nanomedicine system, nanoscale and nanostructured functional materials are used to manipulate the human biology systems at the molecular level for cancer imaging and therapy. New nanostructure based functional materials consist of nanoscale liposomes, spheres, micelles, capsules, emulsion, suspension and phamacosomes. Several functional nanoparticles such as lipidbased and polymer-based materials are demonstrated to be drug delivery vehicles and imaging agents. These materials are biodegradable, biocompatible and have better biodistribution, lower side effect and lower toxicity. In addition, hybrids with these materials coating provide uniquely electrical, optical and magnetic properties. This review discusses the research on the applications of functional materials, especially nanoparticles as imaging contrast agents, cancer therapeutic agents and multi-functional agents and this review focused on the theranostic integration treatments on liver cancer and brain cancer.


Author(s):  
Lawrence H. Starkey

For two centuries Kant's first Critique has nourished various turns against transcendent metaphysics and realism. Kant was scandalized by reason's impotence in confronting infinity (or finitude) as seen in the divisibility of particles and in spatial extension and time. Therefore, he had to regard the latter as subjective and reality as imponderable. In what follows, I review various efforts to rationalize Kant's antinomies-efforts that could only flounder before the rise of Einstein's general relativity and Hawking's blackhole cosmology. Both have undercut the entire Kantian tradition by spawning highly probable theories for suppressing infinities and actually resolving these perplexities on a purely physical basis by positing curvatures of space and even of time that make them reëntrant to themselves. Heavily documented from primary sources in physics, this paper displays time’s curvature as its slowing down near very massive bodies and even freezing in a black hole from which it can reëmerge on the far side, where a new universe can open up. I argue that space curves into a double Möbius strip until it loses one dimension in exchange for another in the twin universe. It shows how 10-dimensional GUTs and the triple Universe, time/charge/parity conservation, and strange and bottom particle families and antiparticle universes, all fit together.


Sign in / Sign up

Export Citation Format

Share Document