A statistical approach for tailoring the morphological and mechanical properties of polystyrene PolyHIPEs: looking through experimental design

2019 ◽  
Vol 6 (11) ◽  
pp. 115306 ◽  
Author(s):  
Hatice Hande Mert ◽  
Mehmet Selçuk Mert ◽  
Emine Hilal Mert
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


2018 ◽  
Vol 77 (7) ◽  
Author(s):  
P. Vazquez ◽  
N. Sánchez-Delgado ◽  
L. Carrizo ◽  
C. Thomachot-Schneider ◽  
F. J. Alonso

2006 ◽  
Vol 45 ◽  
pp. 1429-1434
Author(s):  
Leila Figueiredo de Miranda ◽  
Antônio Hortêncio Munhoz Jr. ◽  
Terezinha Jocelen Masson ◽  
Virgínia Carolina Naime ◽  
Gustavo Camargo Costa

The properties of composites based on thermosetting polyester and barite for use in the radiological protection area have been investigated with the objective to study the effect of different variables in the attainment of composites. To verify the efficiency of the composites produced in relation to radiological protection, lead was adopted as reference. A factorial experimental design was carried out and the studied variables were: type of polyester resin (orthophthalic or isophthalic), coupling agent (titanate or organosilane) and the ratio of resin to accelerator, catalyst and barite. The variables analyzed were: efficiency for barring the X-radiation, apparent density and mechanical properties. The effect, obtained from the experimental design, due to ratio of resin to barite in the apparent density was 0.036. The average apparent density of the samples produced with barite/resin value equal 2.0 (weight ratio) was 2.16g/cm3, while the average density of the samples produced with the weight ratio of barite/resin equal 3.0 was 2.2g/cm3. It was observed same trend for the density to mechanical properties. It was observed that the samples attenuated X-ray radiation adequately up to 116 kV.


Sign in / Sign up

Export Citation Format

Share Document