Attainment and Characterization of the Thermosetting Polymer Loaded with Barite to be Used in the Manufacture of Isolating Plates to Bar the X-Ray Radiation

2006 ◽  
Vol 45 ◽  
pp. 1429-1434
Author(s):  
Leila Figueiredo de Miranda ◽  
Antônio Hortêncio Munhoz Jr. ◽  
Terezinha Jocelen Masson ◽  
Virgínia Carolina Naime ◽  
Gustavo Camargo Costa

The properties of composites based on thermosetting polyester and barite for use in the radiological protection area have been investigated with the objective to study the effect of different variables in the attainment of composites. To verify the efficiency of the composites produced in relation to radiological protection, lead was adopted as reference. A factorial experimental design was carried out and the studied variables were: type of polyester resin (orthophthalic or isophthalic), coupling agent (titanate or organosilane) and the ratio of resin to accelerator, catalyst and barite. The variables analyzed were: efficiency for barring the X-radiation, apparent density and mechanical properties. The effect, obtained from the experimental design, due to ratio of resin to barite in the apparent density was 0.036. The average apparent density of the samples produced with barite/resin value equal 2.0 (weight ratio) was 2.16g/cm3, while the average density of the samples produced with the weight ratio of barite/resin equal 3.0 was 2.2g/cm3. It was observed same trend for the density to mechanical properties. It was observed that the samples attenuated X-ray radiation adequately up to 116 kV.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


1992 ◽  
Vol 287 ◽  
Author(s):  
Y. Sato ◽  
C. Sakurai ◽  
M. Ueki ◽  
K. Sugita

ABSTRACTA homogeneous mixture of Y2O3, CeO2 and MgO with a final weight ratio of 3:1: 2 was prepared by the alkoxide method. The powder mixture was then added into Si3N4 powder in amounts ranging from 4 to 12 wt%, andconsolidated by hot-pressing. Microstructure and mechanical properties of the sintered bodies were determined and compared to those of materials prepared by the conventional route of mixing the oxide powders as sintering aids individually in essentially same composition. The β-fraction (modification ratio) in same composition was higher in thesintered bodies made through the alkoxide method than those made through the conventional one. The room temperature flexural strength was maximized with 6wt% addition of the alkoxide derived oxide, whereas, 12wt% addition of the total oxide was required to maximize the strength by conventional processing.


2020 ◽  
Author(s):  
Sahar. Mokhtari ◽  
Anthony.W. Wren

AbstractThis study addresses issues with currently used bone adhesives, by producing novel glass based skeletal adhesives through modification of the base glass composition to include copper (Cu) and by characterizing each glass with respect to structural changes. Bioactive glasses have found applications in fields such as orthopedics and dentistry, where they have been utilized for the restoration of bone and teeth. The present work outlines the formation of flexible organic-inorganic polyacrylic acid (PAA) – glass hybrids, commercial forms are known as glass ionomer cements (GICs). Initial stages of this research will involve characterization of the Cu-glasses, significant to evaluate the properties of the resulting adhesives. Scanning electron microscopy (SEM) of annealed Cu glasses indicates the presence of partial crystallization in the glass. The structural analysis of the glass using Raman suggests the formation of CuO nanocrystals on the surface. X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS) further confirmed the formation of crystalline CuO phases on the surface of the annealed Cu-glass. The setting reaction was studied using Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the Cu containing adhesives exhibited gel viscoelastic behavior and enhanced mechanical properties when compared to the control composition. Compression data indicated the Cu glass adhesives were efficient at energy dissipation due to the reversible interactions between CuO nano particles and PAA polymer chains.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


2011 ◽  
Vol 236-238 ◽  
pp. 83-86 ◽  
Author(s):  
Xian Hui Sun

The collagen was blended with polyvinyl alcohol (PVA) with the maximum maintenance of the natural structure as precondition. The apparent viscosity and rheology property of PVA-collagen blended solution were studied. the mechanical properties of the blend membrane formed from PVA-collagen blended solution were also determined. The PVA-collagen blended solution was wet spinned with the sodium sulfate as coagulant to prepare PVA-collagen composite fibers. SEM analysis and X-ray diffraction analysis of the PVA-collagen composite fibers were studied. The results indicated that, blended with PVA, the spinning property and mechanical properties of collagen were improved. The figure of the aim fiber transect structure was similar as the kidney, and it had a uniform size. The crystallization degree of the fiber was 55.7%, and it was increased with the increase of the hot extending temperature and the extending ratio.


2015 ◽  
Vol 766-767 ◽  
pp. 122-132
Author(s):  
Tippusultan ◽  
V.N. Gaitonde

Polymers reinforced with synthetic fibers such as glass and carbon offer advantages of high stiffness and strength to weight ratio compared to conventional materials. Despite these advantages, the prevalent use of synthetic fiber-reinforced polymer composite has a tendency to demur because of high initial cost and most importantly their adverse environmental impact. On the contrary, the increased interest in using natural fibers as reinforcement in plastics to substitute conventional synthetic fibers in automobile applications has become one of the main concerns to study the potential of using natural fibers as reinforcement for polymers. In this regard, an investigative study has been carried out to make potential utilization of natural fibers such as Jute and Coir as reinforcements, which are cheap and abundantly available in India. The objective of the present research work is to study the effects of fiber loading and particle size; fiber loading and fiber length on the mechanical properties of Jute-PP and Coir-PP bio-composites respectively. The experiments were planned as per full factorial design (FFD) and response surface methodology (RSM) based second order mathematical models of mechanical properties have been developed. Analysis of variance (ANOVA) has been employed to check the adequacy of the developed models. From the parametric analysis, it is revealed that Jute-PP bio-composites exhibit better mechanical properties when compared to Coir-PP bio-composites.


Biomaterials ◽  
2011 ◽  
Vol 32 (34) ◽  
pp. 8892-8904 ◽  
Author(s):  
Holly D. Barth ◽  
Elizabeth A. Zimmermann ◽  
Eric Schaible ◽  
Simon Y. Tang ◽  
Tamara Alliston ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Mayank Agrawal

Present study focuses on the carbon fiber sizing and their effect on overall mechanical properties of composites. Fiber sizing are one of the most important component in the manufacturing of composites. As the sizing are so much of importance in the manufacturing and development of composites which governs mechanical properties such as strength and stiffness. In this review some of the important articles are referred from the widely dispersed literature. This review covers the sizing effect, adhesion between fiber and matrix and characterization of composites


Sign in / Sign up

Export Citation Format

Share Document