scholarly journals Investigation of microstructure and liquid lead corrosion behavior of a Fe-18Ni-16Cr-4Al base alumina-forming austenitic stainless steel

2020 ◽  
Vol 7 (2) ◽  
pp. 026533
Author(s):  
Lingzhi Chen ◽  
Man Wang ◽  
Valentyn Tsisar ◽  
Carsten Schroer ◽  
Zhangjian Zhou
Author(s):  
Harris Prabowo ◽  
Badrul Munir ◽  
Yudha Pratesa ◽  
Johny W. Soedarsono

The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.


2015 ◽  
Vol 67 (3) ◽  
pp. 264-270 ◽  
Author(s):  
S. F. Li ◽  
Z. J. Zhou ◽  
L. F. Zhang ◽  
L. W. Zhang ◽  
H. L. Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document