scholarly journals Numerical design of a high efficiency and ultra-broadband terahertz cross-polarization converter

Author(s):  
Thanh Nghia Cao ◽  
Minh Tam Nguyen ◽  
Ngoc Hieu Nguyen ◽  
Chi Lam Truong ◽  
Thi Quynh Hoa Nguyen
2021 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Man Zhang ◽  
Weihua Wang ◽  
Zhengyong Song

Abstract Utilizing the phase transition characteristic of vanadium dioxide, we present a metamaterial configuration to achieve both reflective and transmissive cross-polarization converters. When vanadium dioxide is metal, the design behaves as a reflective cross-polarization converter. It consists of metallic grating, topas spacer, and vanadium dioxide film. Polarization conversion ratio is more than 90% in the frequency range from 4.80 THz to 13.13 THz. When vanadium dioxide is insulator, the design behaves as a transmissive cross-polarization converter using cascaded metallic gratings with rotation angle . High-efficiency broadband cross-polarization wave conversion is achieved in the frequency band of 0.50-4.75 THz. The effects of oblique incidence on reflective and transmissive modes are studied on polarization conversion. The results tell that cross-polarization conversion is better when incident angle is in the range of -. The designed metamaterial may have a certain inspiration for the research of terahertz multifunctional polarization converter.


2016 ◽  
Vol 58 (10) ◽  
pp. 2402-2405 ◽  
Author(s):  
Bao-Qin Lin ◽  
Xin-Yu Da ◽  
Jia-Liang Wu ◽  
Wei Li ◽  
Yin-Wu Fang ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Huan Zhao ◽  
Xinke Wang ◽  
Jingwen He ◽  
Jinying Guo ◽  
Jiasheng Ye ◽  
...  

2018 ◽  
Vol 57 (29) ◽  
pp. 8720 ◽  
Author(s):  
Vinit Singh Yadav ◽  
Sambit Kumar Ghosh ◽  
Somak Bhattacharyya ◽  
Santanu Das

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Negin Pouyanfar ◽  
Javad Nourinia ◽  
Changiz Ghobadi

AbstractA compact and asymmetric multi-band reflective polarization converter metasurface has been offered in this paper. The proposed simple converter can effectively convert an incident linearly polarized EM wave to its orthogonal counterpart and circular polarized waves (RHCP and LHCP) at two frequency bands. The design consists of a square with two curves on the top right and lower left corners and a square Split Ring Resonator (SRR) responsible for linear-to-linear and linear-to-circular polarization conversions, respectively. The simulated results show that the converter successfully transforms a y-polarized incident wave to its orthogonal counterpart in a frequency range of 15.5–16.5 GHz with unity conversion at 16 GHz and circularly-polarized (RHCP) wave at 13 GHz and (LHCP) at 18 GHz, verified through the fabricated and measured sample. Wide angular stability up to 60° oblique incidence along with high efficiency reveals the good applicability of the structure. Moreover, the root cause of the cross-polarization conversion has been analyzed and confirmed through Bi-Mode Foster equivalent circuit and surface current distribution as well. Finally, a fabricated prototype is tested to validate the simulated results through measurement.


2020 ◽  
Vol 62 (8) ◽  
pp. 2703-2707 ◽  
Author(s):  
Wanli Meng ◽  
Baoyu Hou ◽  
Qiuhong Cao ◽  
Hongmei Lin ◽  
Wei Zhou ◽  
...  

2020 ◽  
Author(s):  
Yaxian Guo ◽  
◽  
Jianchun Xu ◽  
Chuwen Lan ◽  
Ke Bi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thi Kim Thu Nguyen ◽  
Thi Minh Nguyen ◽  
Hong Quang Nguyen ◽  
Thanh Nghia Cao ◽  
Dac Tuyen Le ◽  
...  

AbstractA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42–7.6 GHz and 13–13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.


Sign in / Sign up

Export Citation Format

Share Document