Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

2018 ◽  
Vol 3 (2) ◽  
pp. 025002 ◽  
Author(s):  
Suzanne Smith ◽  
Adelaide Oberholzer ◽  
Kevin Land ◽  
Jan G Korvink ◽  
Dario Mager
2019 ◽  
Vol 144 (2) ◽  
pp. 189-195
Author(s):  
Andrew P. Norgan ◽  
Kurt E. Simon ◽  
Barbara A. Feehan ◽  
Lynn L. Saari ◽  
Joseph M. Doppler ◽  
...  

Context.— Preanalytic errors, including specimen labeling errors and specimen loss, occur frequently during specimen collection, transit, and accessioning. Radio-frequency identification tags can decrease specimen identification and tracking errors through continuous and automated tracking of specimens. Objective.— To implement a specimen tracking infrastructure to reduce preanalytic errors (specimen mislabeling or loss) between specimen collection and laboratory accessioning. Specific goals were to decrease preanalytic errors by at least 70% and to simultaneously decrease employee effort dedicated to resolving preanalytic errors or investigating lost specimens. Design.— A radio-frequency identification specimen-tracking system was developed. Major features included integral radio-frequency identification labels (radio-frequency identification tags and traditional bar codes in a single printed label) printed by point-of-care printers in collection suites; dispersed radio-frequency identification readers at major transit points; and systems integration of the electronic health record, laboratory information system, and radio-frequency identification tracking system to allow for computerized physician order entry driven label generation, specimen transit time tracking, interval-based alarms, and automated accessioning. Results.— In the 6-month postimplementation period, 6 mislabeling events occurred in collection areas using the radio-frequency identification system, compared with 24 events in the 6-month preimplementation period (75% decrease; P = .001). In addition, the system led to the timely recovery of 3 lost specimens. Labeling expenses were decreased substantially in the transition from high-frequency to ultrahigh frequency radio-frequency identification tags. Conclusions.— Radio-frequency identification specimen tracking prevented several potential specimen-loss events, decreased specimen recovery time, and decreased specimen labeling errors. Increases in labeling/tracking expenses for the system were more than offset by time savings and loss avoidance through error mitigation.


Author(s):  
Han Tao ◽  
Shui Yongan

This chapter overviews a complementary technology to the integrated circuit based radio frequency identification (RFID)---- Surface Acoustic Wave (SAW) based RFID. The fundamental principle and applications of SAW RFID are presented. In order to guarantee the encoding capacity and reliable reading range, the design criteria in coding scheme, tag design and a time domain interrogated reader design are discussed in detail. As an example, a low-cost SAW RFID system applied in poultry farming management is introduced.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 49224-49228
Author(s):  
Almudena Rivadeneyra ◽  
Andreas Albrecht ◽  
Fernando Moreno-Cruz ◽  
Diego P. Morales ◽  
Markus Becherer ◽  
...  

2016 ◽  
Vol 10 (11) ◽  
pp. 812-818 ◽  
Author(s):  
Kirill Arapov ◽  
Kaarle Jaakkola ◽  
Vladimir Ermolov ◽  
Guy Bex ◽  
Eric Rubingh ◽  
...  

Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


Sign in / Sign up

Export Citation Format

Share Document