Bandwidth Control of Loop Type Frequency Selective Surfaces Using Dual Elements in Various Arrangements

Author(s):  
Nickolas Littman ◽  
Steven G. O'Keefe ◽  
Amir Galehdar ◽  
Hugo G. Espinosa ◽  
David V. Thiel

Abstract Frequency-selective surfaces (FSSs) have applications across multiple disciplines due to their unique electromagnetic properties. This paper investigates the use of both rounded square loops (RSLs), and simple loop type dual elements arranged in unique patterns, to control the transmission and reflection bandwidth and resonant frequencies over KU and K frequency bands supported by equivalent circuit models (ECMs). The FSSs were fabricated using laser engraving to create conductive loop type elements on a thin, flexible and optically transparent Mylar substrate (relative permittivity of 2.7 and thickness of 65m). The frequency response of the surfaces are controlled through the element self-inductance and capacitive coupling with neighbouring elements. This work shows that different arrangements result in the formation of multiple distinct resonances. The theoretical and experimental results were in good agreement where rounded squares and dual element arrays were employed to create broadband and multiband band-stop FSSs. A polarization sensitive surface exhibited stop-bands at 12GHz and 16GHz in transverse electric polarization and a stop-band at 14.4GHz in transverse magnetic polarization. This technique can be applied to any periodic array through careful selection of the individual elements in the array, as well as their arrangement.

2011 ◽  
Vol 47 (5) ◽  
pp. 1518-1521 ◽  
Author(s):  
José I. A. Trindade ◽  
Paulo H. da F. Silva ◽  
Antonio L. P. S. Campos ◽  
Adaildo G. D'Assuncao

Author(s):  
Amit Birwal ◽  
Sanjeev Singh ◽  
Binod Kumar Kanaujia

Abstract In this paper, a novel design of ultra-wide stop-band single-side single-layer frequency selective surface (FSS) is presented. The unit cell of the proposed FSS is designed using the combination of conventional square loop and cross (CSLC). To enhance the bandwidth of this structure, an additional cross is inserted in all the four quadrants of CSLC. The stop-band transmission bandwidth assuming −10 dB threshold is found to be 128.94% (2.16–10 GHz) which is 34.33% more as compared to the bandwidth of CSLC. The unit cell with a dimension of 16 × 16 mm2 is printed on one side of an FR4 substrate. The design is fabricated and the measured results are found to be in good agreement with the simulated results. The design provides excellent stability for both transverse magnetic and transverse electric polarizations. The design is very flexible, where any resonant frequency can be achieved by changing the length of unit cell. The design is useful in many applications such as antenna gain enhancement, electromagnetic wave shielding for Wi-Fi/5G systems, and other Internet of Things-based applications.


Author(s):  
Wirlan Gomes Lima ◽  
Jasmine Priscyla Leite Leite de Araújo ◽  
Fabrício José Brito Barros ◽  
Gervásio Protásio Dos Santos Cavalcante ◽  
Cássio da Cruz Nogueira ◽  
...  

In this study, two bioinspired computation (BIC) techniques are discussed and applied to the project and synthesis of multilayer frequency selective surfaces (FSS) within the microwave band, specifically for C, X and Ku bands. The proposed BIC techniques consist of combining an artificial, general regression neural network to a genetic algorithm (GA) and a cuckoo search algorithm, respectively. The objective is to find the optimal values of separation between the investigated FSS. Numerical analysis of the electromagnetic properties of the device is made possible with the finite integration method (FIT) and validated through the finite element method (FEM), utilizing both softwares CST Microwave Studio and Ansys HFSS respectively. Thus, the BIC-optimized devices present good phase / angular stability for angles 10°, 20°, 30° and 40°, as well as being polarization independent. The cutoff frequencies to control the operating frequency range of the FSS, referring to transmission coefficient in decibels (dB), were obtained at a threshold of –10dB. Numerical results denote good accordance with measured data.


Sign in / Sign up

Export Citation Format

Share Document