scholarly journals Modeling net effects of transit operations on vehicle miles traveled, fuel consumption, carbon dioxide, and criteria air pollutant emissions in a mid-size US metro area: findings from Salt Lake City, UT

2019 ◽  
Vol 1 (9) ◽  
pp. 091002 ◽  
Author(s):  
Daniel L Mendoza ◽  
Martin P Buchert ◽  
John C Lin
2018 ◽  
Vol 99 (11) ◽  
pp. 2325-2339 ◽  
Author(s):  
John C. Lin ◽  
Logan Mitchell ◽  
Erik Crosman ◽  
Daniel L. Mendoza ◽  
Martin Buchert ◽  
...  

AbstractUrban areas are responsible for a substantial proportion of anthropogenic carbon emissions around the world. As global populations increasingly reside in cities, the role of urban emissions in determining the future trajectory of carbon emissions is magnified. Consequently, a number of research efforts have been started in the United States and beyond, focusing on observing atmospheric carbon dioxide (CO2) and relating its variations to carbon emissions in cities. Because carbon emissions are intimately tied to socioeconomic activity through the combustion of fossil fuels, and many cities are actively adopting emission reduction plans, such urban carbon research efforts give rise to opportunities for stakeholder engagement and guidance on other environmental issues, such as air quality.This paper describes a research effort centered in the Salt Lake City, Utah, metropolitan region, which is the locus for one of the longest-running urban CO2 networks in the world. The Salt Lake City area provides a rich environment for studying anthropogenic emissions and for understanding the relationship between emissions and socioeconomic activity when the CO2 observations are enhanced with a) air quality observations, b) novel mobile observations from platforms on light-rail public transit trains and a news helicopter, c) dense meteorological observations, and d) modeling efforts that include atmospheric simulations and high-resolution emission inventories.Carbon dioxide and other atmospheric observations are presented, along with associated modeling work. Examples in which the work benefited from and contributed to the interests of multiple stakeholders (e.g., policymakers, air quality managers, municipal government, urban planners, industry, and the general public) are discussed.


2020 ◽  

<p>Air pollutant emissions and fuel consumption of vehicles equipped with internal combustion engines are highly susceptible to the conditions of engine operation. The purpose of this research was to investigate the correlation between the emissions of individual pollutants (carbon monoxide, hydrocarbons, nitrogen oxides, and carbon dioxide), the fuel consumption and various dynamic conditions of the operation of an engine. The empirical data was obtained by testing of passenger car with a spark-ignition engine on a chassis dynamometer in 12 various driving tests, both type-approval and special. The results indicate, that the strongest correlation exists between the emissions of carbon dioxide and hydrocarbons and between the fuel consumption and the emissions of hydrocarbons and carbon dioxide. The weakest correlation was found to be between the emissions of carbon monoxide and nitrogen oxides. The average value of vehicle velocity proved to be suitable zero-dimensional characteristic of the dynamic driving conditions. The correlation between the emission of hydrocarbons and the average vehicle velocity can be assessed as the strongest, while between the emission of nitrogen oxides and the average vehicle velocity – the weakest.</p>


Sign in / Sign up

Export Citation Format

Share Document