scholarly journals CO2 and Carbon Emissions from Cities: Linkages to Air Quality, Socioeconomic Activity, and Stakeholders in the Salt Lake City Urban Area

2018 ◽  
Vol 99 (11) ◽  
pp. 2325-2339 ◽  
Author(s):  
John C. Lin ◽  
Logan Mitchell ◽  
Erik Crosman ◽  
Daniel L. Mendoza ◽  
Martin Buchert ◽  
...  

AbstractUrban areas are responsible for a substantial proportion of anthropogenic carbon emissions around the world. As global populations increasingly reside in cities, the role of urban emissions in determining the future trajectory of carbon emissions is magnified. Consequently, a number of research efforts have been started in the United States and beyond, focusing on observing atmospheric carbon dioxide (CO2) and relating its variations to carbon emissions in cities. Because carbon emissions are intimately tied to socioeconomic activity through the combustion of fossil fuels, and many cities are actively adopting emission reduction plans, such urban carbon research efforts give rise to opportunities for stakeholder engagement and guidance on other environmental issues, such as air quality.This paper describes a research effort centered in the Salt Lake City, Utah, metropolitan region, which is the locus for one of the longest-running urban CO2 networks in the world. The Salt Lake City area provides a rich environment for studying anthropogenic emissions and for understanding the relationship between emissions and socioeconomic activity when the CO2 observations are enhanced with a) air quality observations, b) novel mobile observations from platforms on light-rail public transit trains and a news helicopter, c) dense meteorological observations, and d) modeling efforts that include atmospheric simulations and high-resolution emission inventories.Carbon dioxide and other atmospheric observations are presented, along with associated modeling work. Examples in which the work benefited from and contributed to the interests of multiple stakeholders (e.g., policymakers, air quality managers, municipal government, urban planners, industry, and the general public) are discussed.

Author(s):  
Daniel L Mendoza ◽  
Tabitha M Benney ◽  
Ryan Bares ◽  
Benjamin Fasoli ◽  
Corbin Anderson ◽  
...  

Every day around 93% of children under the age of 15 (1.8 billion children) breathe outdoor air that is so polluted it puts their health and development at serious risk. Due to the pandemic, however, ventilation of buildings using outdoor air has become an important safety technique to prevent the spread of COVID-19. With the mounting ev-idence suggesting that air pollution is impactful to human health and educational out-comes, this contradictory guidance may be problematic in schools with higher air pol-lution levels, but keeping kids COVID-19 free and in school to receive their education is now more pressing than ever. To understand if all schools in an urban area are ex-posed to similar outdoor air quality and if school infrastructure protects children equally indoors, we installed research grade sensors to observe PM2.5 concentrations in indoor and outdoor settings to understand how unequal exposure to indoor and out-door air pollution impacts indoor air quality among high- and low-income schools in Salt Lake City, Utah. Based on this approach, we found that during atmospheric inver-sions and dust events, there was a lag ranging between 35 to 73 minutes for the out-door PM2.5 concentrations to follow a similar temporal pattern as the indoor PM2.5. This lag has policy and health implications and may help to explain the rising concerns re-garding reduced educational outcomes related to air pollution in urban areas. These data and resulting analysis show that poor air quality may impact school settings, and the potential implications with respect to environmental inequality.


2015 ◽  
Vol 2 (2) ◽  
pp. 18
Author(s):  
Augustina Naami

<p>Gender and disability interacts to create several challenges and vulnerabilities for women with disabilities. This paper explores and compares the daily experiences of unemployed women with physical disabilities in Tamale-Ghana and Salt Lake City, Utah in the United States.</p><p>Face-to-face in-depth interviews were conducted with 15 women with physical disabilities about their experiences with employment, unemployment and how unemployment affects their lives. Outcome suggests that the women encounter several challenges in their daily lives relating to mobility, family relationships, income, social participation and living arrangement. While some of the experiences undoubtedly differ between the two studies, some, interestingly, were similar across the two geographic regions regardless of the cultural differences.</p>


2010 ◽  
Vol 25 (4) ◽  
pp. 1211-1218 ◽  
Author(s):  
Robert R. Gillies ◽  
Shih-Yu Wang ◽  
Jin-Ho Yoon ◽  
Scott Weaver

Abstract A recent study by Gillies and others of persistent inversion events in the Intermountain West of the United States found a substantive linkage between the intraseasonal oscillation (ISO) and the development of persistent inversion events. Given that NCEP’s Climate Forecast System (CFS) has demonstrated skill in the prediction of the ISO as far out as 1 month, it was decided to examine the CFS forecast’s capability in the prediction of such winter persistent inversions. After initial analysis, a simple regression scheme is proposed that is coupled to the CFS output of geopotential height as a way to predict the occurrence of persistent inversion events for Salt Lake City, Utah. Analysis of the CFS hindcasts through the period 1981–2008 indicates that the regression coupled with the CFS can predict persistent inversion events with lead times of up to 4 weeks. The adoption of this coupled regression–CFS prediction may improve the forecasting of persistent inversion events in the Intermountain West, which is currently restricted to the more limited time span (∼10 days) of medium-range weather forecast models.


2012 ◽  
Vol 34 (1) ◽  
pp. 61-82 ◽  
Author(s):  
Suhi Choi

Abstract Since its fiftieth anniversary, memorialization of the Korean War has taken place in towns and cities across the United States. As a case study of this belated memory boom, this essay looks at the Utah Korean War Memorial, erected by local veterans in 2003 at Memory Grove Park, Salt Lake City. Situated in both the local and national contexts of remembrance, the memorial resonates largely with three mythical scripts, with themes of resilience, local pride, and the good war, all of which have allowed veterans to negotiate tensions between individual and collective memories. This case study reveals in particular how the official commemoration of the war has shifted local veterans' rhetorical positions from potential witnesses of subversive realities of the war to uncritical negotiators whose legitimization of the very process of mythologizing memories has ultimately alienated them from their own experiences during and after the war.


Author(s):  
John Aronis ◽  
Nicholas Millett ◽  
Michael Wagner ◽  
Fuchiang Tsui ◽  
Ye Ye ◽  
...  

ntroductionInfluenza is a contagious disease that causes epidemics in manyparts of the world. The World Health Organization estimates thatinfluenza causes three to five million severe illnesses each year and250,000-500,000 deaths [1]. Predicting and characterizing outbreaksof influenza is an important public health problem and significantprogress has been made in predicting single outbreaks. However,multiple temporally overlapping outbreaks are also common.These may be caused by different subtypes or outbreaks in multipledemographic groups. We describe ourMultiple Outbreak DetectionSystem(MODS) and its performance on two actual outbreaks.This work extends previous work by our group [2,3,4] by using model-averaging and a new method to estimate non-influenza influenza-likeillness (NI-ILI). We also apply MODS to a real dataset with a doubleoutbreak.MethodsMODS is part of a framework for disease surveillance developedby our group. In this framework, a natural language processing systemextracts symptoms from emergency department patient-care reports.These features are combined with laboratory results and passed to acase detection system that infers a probability distribution over thediseases each patient may have. These diseases include influenza,NI-ILI, and other (appendicitis, trauma, etc.). This distribution isexpressed in terms of the likelihoods of the patients’ data. These aregiven to MODS which searches a space of multiple outbreak models,computes the likelihood of each model, and calculates the expectednumber of influenza cases day-by-day. This work differs from pastwork in three important ways. First, we address the problem ofdetecting and characterizing multiple, overlapping outbreaks. Second,we do not rely on simple counts, but use likelihoods given evidencein the free-text portion of patient-care reports as well as laboratoryfindings. Third, we explicitly account for non-influenza influenza-like illnesses. This is important because some forms of influenza-likeillness (such as respiratory syncytial virus) are contagious and exhibitoutbreak activity. This research was approved by the University ofPittsburgh and Intermountain Healthcare IRBs.ResultsWe conducted a set of experiments with simulated outbreaks.MODS is able to detect a single outbreak six to eight weeks beforethe peak. It is also able to recognize a second outbreak approximatelyhalfway between peaks for simulated double outbreaks. Weconducted experiments using real outbreaks and compared ourresults to thermometer sales [5]. Using data from Allegheny CountyPennsylvania for the 2009-2010 influenza season, on September1 MODS predicted an outbreak with a peak on October 5. Thethermometer peak was October 21. The figure “Prediction on October1 for Allegheny County” compares MODS’ prediction on October 1to thermometer sales. Using data from Salt Lake City Utah for the2010-2011 influenza season, on November 1 MODS predicted anoutbreak with peak on December 7. The first thermometer peak wasDecember 29. On January 20 MODS predicted a second outbreakwith peak on February 9. The second thermometer peak was March5. The figure “Prediction on January 20 for Salt Lake City” comparesMODS’ prediction on January 20 to thermometer sales.ConclusionsWe have built aMultiple Outbreak Detection Systemthat candetect and characterize overlapping outbreaks of influenza. Althoughthe system currently predicts outbreaks of influenza, it is built on ageneral Bayesian framework that can be extended to other diseases.Future work includes incorporating multiple forms of evidence,modeling other known contagious diseases, and detecting outbreaksof new previously unknown diseases.Prediction on October 1 for Allegheny County 2009-2010Prediction on January 20 for Salt Lake City 2010-2011


2021 ◽  
Vol 9 ◽  
Author(s):  
Nathan A. Toké ◽  
Joseph Phillips ◽  
Christopher Langevin ◽  
Emily Kleber ◽  
Christopher B. DuRoss ◽  
...  

How structural segment boundaries modulate earthquake behavior is an important scientific and societal question, especially for the Wasatch fault zone (WFZ) where urban areas lie along multiple fault segments. The extent to which segment boundaries arrest ruptures, host moderate magnitude earthquakes, or transmit ruptures to adjacent fault segments is critical for understanding seismic hazard. To help address this outstanding issue, we conducted a paleoseismic investigation at the Traverse Ridge paleoseismic site (TR site) along the ∼7-km-long Fort Canyon segment boundary, which links the Provo (59 km) and Salt Lake City (40 km) segments of the WFZ. At the TR site, we logged two trenches which were cut across sub-parallel traces of the fault, separated by ∼175 m. Evidence from these exposures leads us to infer that at least 3 to 4 earthquakes have ruptured across the segment boundary in the Holocene. Radiocarbon dating of soil material developed below and above fault scarp colluvial packages and within a filled fissure constrains the age of the events. The most recent event ruptured the southern fault trace between 0.2 and 0.4 ka, the penultimate event ruptured the northern fault trace between 0.6 and 3.4 ka, and two prior events occurred between 1.4 and 6.2 ka (on the southern fault trace) and 7.2 and 8.1 ka (northern fault trace). Colluvial wedge heights of these events ranged from 0.7 to 1.2 m, indicating the segment boundary experiences surface ruptures with more than 1 m of vertical displacement. Given these estimates, we infer that these events were greater than Mw 6.7, with rupture extending across the entire segment boundary and portions of one or both adjacent fault segments. The Holocene recurrence of events at the TR site is lower than the closest paleoseismic sites at the adjacent fault segment endpoints. The contrasts in recurrence rates observed within 15 km of the Fort Canyon fault segment boundary may be explained conceptually by a leaky segment boundary model which permits spillover events, ruptures centered on the segment boundary, and segmented ruptures. The TR site demonstrates the utility of paleoseismology within segment boundaries which, through corroboration of displacement data, can demonstrate rupture connectivity between fault segments and test the validity of rupture models.


Sign in / Sign up

Export Citation Format

Share Document