scholarly journals Climbing Jacob’s ladder: A density functional theory case study for Ag2ZnSnSe4 and Cu2ZnSnSe4

2020 ◽  
Vol 3 (1) ◽  
pp. 015002
Author(s):  
Daniel Fritsch ◽  
Susan Schorr
Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 27 ◽  
Author(s):  
James D. Kubicki ◽  
Tsutomu Ohno

Density functional theory (DFT) calculations are a quantum mechanical approach that can be used to model chemical reactions on an atomistic scale. DFT provides predictions on structures, thermodynamics, spectroscopic parameters and kinetics that can be compared against experimentally determined data. This paper is a primer on the basics of utilizing DFT for applications in mineral-water interfaces. In our case-study, we use DFT to model the surface complexes of phosphate and salicylate adsorbed onto the (101) and (210) surfaces of α-FeOOH (goethite), as an example of combining DFT and experiment. These three components are important in the phosphorus-organic matter interactions in soils, and by comparing the energies of the two surface complexes, the exchange energy of salicylate for phosphate onto goethite can be estimated. The structures of the surface complexes are predicted and the resulting vibrational frequencies calculated based on these structures are compared to previous observations. Upon verification of reasonable surface complex models, the potential energy of exchanging salicylate for phosphate is calculated and shown to be significantly exothermic. This model result is consistent with observations of plant exudates, such as salicylate freeing adsorbed phosphate in soils under P-limited conditions.


2020 ◽  
Vol 22 (28) ◽  
pp. 15805-15830 ◽  
Author(s):  
Dale R. Lonsdale ◽  
Lars Goerigk

The one-electron self-interaction error (SIE) is analysed for 74 Density Functional Theory (DFT) approximations in a series of novel one-electron model systems revealing new aspects of the SIE that should be considered in future DFT developments.


RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101216-101225 ◽  
Author(s):  
Renan Augusto Pontes Ribeiro ◽  
Sergio Ricardo de Lazaro ◽  
Carlo Gatti

In this study, ab initio density functional theory calculations were performed on ATiO3 (A = Mn, Fe, Ni) materials for multiferroic applications.


2021 ◽  
Author(s):  
Thayalaraj Christopher Jeyakumar ◽  
Francisxavier Paularokiadoss

The chemistry of Group 13 Monohalide is of great interest due to its isoelectronic relationship with carbon monoxide and dinitrogen. In recent years, theoretical and experimental studies have been evolved on the group-13 atom-based diatomic molecules as a ligand. The synthetic, characterisation and reactivity of various metal complexes have been well discussed in recent reviews. The nature of the metal bonding of these ligands of various types has been explained in addition by the variety of theoretical studies (using DFT methods) such as FMO and EDA. This chapter has a comprehensive experimental and theoretical study of group 13 monohalides as a ligand in coordination chemistry.


Sign in / Sign up

Export Citation Format

Share Document