Magnetic excitation of high-Q resonance with split-ring resonators

Author(s):  
Jing-chun Yan ◽  
Shi-qian Zhang ◽  
Yong Zhang ◽  
Yu-lin Wang ◽  
Cheng-ping Huang

Abstract Planar split-ring resonators (SRRs) with broken symmetry, excited by the electric field of incident wave, have been widely used to realize the high-Q resonance. In this paper, we report by theory and experiment an alternative scheme to induce the SRR-based high-Q resonance. The proposed scheme utilizes a two-dimensional array of vertical SRRs with vertical air gaps, which enables the excitation of narrow resonance with magnetic field and strong enhancement of local electromagnetic fields. The working mechanism correlates with the strong directional dependence of the dipole radiation (i.e., the elimination of electric-dipole radiation of the SRRs in the propagation direction), rather than the destructive interference due to the structural symmetry breaking. The dependence of Q factor on the structural parameters has also been studied theoretically, suggesting that a Q factor more than 2000 can be achieved. The results may be useful for designing narrow-band filters and sensors in the microwave or THz regime.

Author(s):  
Thomas Lautenbacher ◽  
Raphael Mzyk ◽  
Robert Weigel ◽  
Georg Fischer ◽  
Alexander Koelpin

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zhonggang Xiong ◽  
Liping Shang ◽  
Jieping Yang ◽  
Linyu Chen ◽  
Jin Guo ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 381
Author(s):  
Wei-Fan Chiang ◽  
Yu-Yun Lu ◽  
Yin-Pei Chen ◽  
Xin-Yu Lin ◽  
Tsong-Shin Lim ◽  
...  

Liquid crystal (LC) cells that are coated with metamaterials are fabricated in this work. The LC directors in the cells are aligned by rubbed polyimide layers, and make angles θ of 0°, 45°, and 90° with respect to the gaps of the split-ring resonators (SRRs) of the metamaterials. Experimental results display that the resonance frequencies of the metamaterials in these cells increase with an increase in θ, and the cells have a maximum frequency shifting region of 18 GHz. Simulated results reveal that the increase in the resonance frequencies arises from the birefringence of the LC, and the LC has a birefringence of 0.15 in the terahertz region. The resonance frequencies of the metamaterials are shifted by the rubbing directions of the polyimide layers, so the LC cells coated with the metamaterials are passively tunable terahertz filters. The passively tunable terahertz filters exhibit promising applications on terahertz communication, terahertz sensing, and terahertz imaging.


Author(s):  
Divya Prakash ◽  
Nisha Gupta

Abstract Sensors based on metamaterial absorbers are very promising when it comes to high sensitivity and quality factor, cost, and ease of fabrication. The absorbers could be used to sense physical parameters such as temperature, pressure, density as well as they could be used for determining electromagnetic properties of materials and their characterization. In this work, an attempt has been made to explore the various possible applications of these sensors. Metamaterial-based sensors are very popular for its diverse applications in areas such as biomedical, chemical industry, food quality testing, agriculture. Split-ring resonators with various shapes and topologies are the most frequently used structures where the sensing principle is based on electromagnetic interaction of the material under test with the resonator. Overcoming the design challenges using metamaterial sensors involving several constraints such as cost, compactness, reusability, ease in fabrication, and robustness is also addressed.


Sign in / Sign up

Export Citation Format

Share Document