scholarly journals Thermal system-specific and net-zero carbon least-cost design of new houses in Canadian cold climates

2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.

2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view


2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view


Author(s):  
Michael Somers ◽  
Liaw Batan ◽  
Baha Al-Alawi ◽  
Thomas H. Bradley

Abstract The transportation sector accounts for over 20 percent of greenhouse gas (GHG) emissions in Colorado which without intervention will grow to over 30 million metric tons (MMT) of GHG emissions per year. This study seeks to develop a specific characterization of the Colorado fuel and transportation system using a customized life cycle assessment (LCA) model. The model (CO-GT) was developed as an analytical tool to define Colorado’s 2020 baseline life cycle GHG emissions for the transportation sector, and to examine Colorado-specific pathways for GHG reductions through fuel types and volumes changes that might be associated with a state clean fuel standard (CFS). By developing a life cycle assessment of transportation fuels that is specific to the state of Colorado’s geography, fleet makeup, policies, energy sector and more, these tools can evaluate various proposals for the transition towards a more sustainable state transportation system. The results of this study include a quantification of the Colorado-specific roles of clean fuels, electricity, extant policies, and fleet transition in projections of the state’s 2030 transportation sector GHG emissions. Relative to a 2020 baseline, electrification of the vehicle fleet is found to reduce state-wide lifecycle GHG emissions by 7.7 MMT CO2e by 2030, and a model CFS policy able to achieve similar reductions in the carbon intensity of clean fuels as was achieved by California in the first 10 years of its CFS policies is found to only reduce state-wide lifecycle GHG emissions by 0.2 MMT CO2e by 2030. These results illustrate the insensitivity of Colorado’s transportation fleet GHG emissions reductions to the presence of CFS policies, as proposed to date.


2021 ◽  
Author(s):  
Conall Mahon ◽  
Maneesh Kumar Mediboyina ◽  
Donna Gartland ◽  
Fionnuala Murphy

Abstract This paper presents a life cycle assessment (LCA) of heat supply scenarios for the replacement of fossil-based energy systems through a case study focusing on an existing gas-fired boiler supplying heat for buildings located in Tallaght, Ireland. The three replacement systems considered are a waste heat fed heat pump district heating system (WHP-DH), a biomass CHP plant district heating system (BCHP-DH), and an individual gas boiler system (GB). The study found that both DH systems have lower environmental impact than the GB, with the BCHP-DH being superior to WHP-DH. However, using 2030 electricity data showed almost similar overall impacts for both the DH systems. Human toxicity potential (HTP) was highest among all impact categories studied and was due to the large additional infrastructure requirement for all three systems. Whereas the other impacts; Global warming (GWP), Fossil fuel depletion (FFD) and Eutrophication (EP), were due to involving usage of natural gas and electricity in use phase. The BCHP-DH showed reduced greenhouse gas (GHG) emissions by 45% and FFD by 73% compared to the GB system. Using 2030 electricity data, the WHP-DH decreased GHG emissions by 42% and FFD by 47%. Further, replacing biomethane with the natural gas in the DH systems decreased GWP by at least 11.4%. The present study concludes that the environmental benefit of a DH system is largely dependent on the carbon intensity of the electricity it uses, thus recommending the DH systems for large scale retrofitting schemes in Ireland to reach Europe’s 2030 GHG reduction targets.


2021 ◽  
Author(s):  
Patrick W. Andres

Whole building energy and life cycle impact modeling was conducted for a single-family detached reference building designed to meet the Passive House Standard. Life cycle operating global warming potential (GWP) and building envelope embodied GWP were assessed for two mechanical system configurations and three Canadian cities. Variations in regional electricity carbon intensity were found to significantly impact both operating and embodied GWP. Embodied GWP was found to be significant relative to operating GWP in locations with access to low carbon electricity. Additionally, use of natural gas mechanical systems in Edmonton resulted in 360% greater operating emissions than in Montreal, while electric heat pump mechanicals yielded 6,600% higher emissions. Finally, the Passive House Standard method for quantifying operating GWP was found to overestimate emissions by up to 3700% in Montreal and underestimate emissions by 34% in Edmonton, when compared to a method accounting for variations in regional electricity carbon intensity.


2020 ◽  
Vol 70 (4) ◽  
pp. 482-492
Author(s):  
Hongmei Gu ◽  
Shaobo Liang ◽  
Richard Bergman

Abstract Mass timber building materials such as cross-laminated timber (CLT) have captured attention in mid- to high-rise building designs because of their potential environmental benefits. The recently updated multistory building code also enables greater utilization of these wood building materials. The cost-effectiveness of mass timber buildings is also undergoing substantial analysis. Given the relatively new presence of CLT in United States, high front-end construction costs are expected. This study presents the life-cycle cost (LCC) for a 12-story, 8,360-m2 mass timber building to be built in Portland, Oregon. The goal was to assess its total life-cycle cost (TLCC) relative to a functionally equivalent reinforced-concrete building design using our in-house-developed LCC tool. Based on commercial construction cost data from the RSMeans database, a mass timber building design is estimated to have 26 percent higher front-end costs than its concrete alternative. Front-end construction costs dominated the TLCC for both buildings. However, a decrease of 2.4 percent TLCC relative to concrete building was observed because of the estimated longer lifespan and higher end-of-life salvage value for the mass timber building. The end-of-life savings from demolition cost or salvage values in mass timber building could offset some initial construction costs. There are minimal historical construction cost data and lack of operational cost data for mass timber buildings; therefore, more studies and data are needed to make the generalization of these results. However, a solid methodology for mass timber building LCC was developed and applied to demonstrate several cost scenarios for mass timber building benefits or disadvantages.


Sign in / Sign up

Export Citation Format

Share Document