scholarly journals Effect of Particle Size and Shape on Wall Slip of Highly Filled Powder Feedstocks for Material Extrusion and Powder Injection Molding

Author(s):  
Daniel Sanetrnik ◽  
Berenika Hausnerova ◽  
Martin Novak ◽  
Bhimasena Nagaraj Mukund
2021 ◽  
Vol 1035 ◽  
pp. 143-151
Author(s):  
Li Chong Zhang ◽  
Wen Yong Xu ◽  
Zhou Li ◽  
Liang Zheng ◽  
Yu Feng Liu ◽  
...  

The effect of particle size and shape on flowability of FGH96 superalloy powder was investigated by field emission scanning electron microscopy (FE-SEM), laser particle size analyzer (LPSA) and X-ray photoelectron spectroscopy (XPS). The results showed that the powder flowability basically presented a decreasing trend as the median diameter decreased. The Hall velocity of the five median diameter powders (50=203.9 μm, 106.3 μm, 83.2 μm, 73.8 μm, 19.9 μm) was 27.18 s/50g, 23.25 s/50g, 23.86 s/50g, 23.42 s/50g and none, respectively. The surface oxides/ hydroxide/nitride of the five median diameter powders were mostly the same, mainly including Al2O3, Cr2O3, MoO3, Nb2O5, Ni (OH)2, TiO2 and TiN. The median diameter 50, shape factors (circularity, aspect ratio, roundness, solidity) and fractal dimension were selected to quantitatively characterize particle size and shape. For the same fluctuation value of powder flowability, the roundness and solidity showed lower sensitivity. Compared with the two shape factors, the sensitivity of circularity and aspect ratio was at an intermediate level, while the median diameter and fractal dimension displayed higher sensitivity. The median diameter and fractal dimension can be used to characterize the principal variation of flowability. The circularity and aspect ratio can be utilized to characterize the variation of flowability supplementally.


1941 ◽  
Vol 33 (9) ◽  
pp. 1157-1164
Author(s):  
E. J. Dunn ◽  
Martin Kushner ◽  
C. H. Baier

Sign in / Sign up

Export Citation Format

Share Document