insoluble drugs
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Guzmán Carissimi ◽  
Mercedes G. Montalbán ◽  
Marta G. Fuster ◽  
Gloria Víllora

This chapter presents a review on the design of nanoparticles which have been proposed as drug delivery systems in biomedicine. It will begin with a brief historical review of nanotechnology including the most common types of nanoparticles (metal nanoparticles, liposomes, nanocrystals and polymeric nanoparticles) and their advantages as drug delivery systems. These advantages include the mechanism of increased penetration and retention, the transport of insoluble drugs and the controlled release. Next, the nanoparticle design principles and the routes of administration of nanoparticles (parental, oral, pulmonary and transdermal) are discussed. Different routes of elimination of nanoparticles (renal and hepatic) are also analyzed.


2021 ◽  
Vol 14 (5) ◽  
pp. 21-37
Author(s):  
M. I. Kaniuk ◽  

The use of multifunctional nanosystems in medicine and research is of contemporary interest. Aim. The purpose of the work was to summarize publications on the prospects of creating and using nanocontainers based on curcumin (Cur). Cur fluorescence in nanoparticles (NP) makes it possible to investigate the distribution of fluorescent and non-fluorescent components, significantly accelerating the study and implementation of drugs in practice. Particular attention is paid to the use of hydrophobic substances in NP, to penetrate into a living cell. Understanding the interaction of NP with living cells is extremely important when these particles are used to transport and deliver water-insoluble drugs to cells. Cur is one of the drugs with various and very promising pharmaceutical effects, it is poorly soluble in aqueous media, and the use of nanocarriers is an effective way to significantly increase its bioavailability. Cur has its own fluorescence, which enables to use it in multifunctional fluorescent nanosystems, for example, with Pluronic® micelles. The use of the fluorescence method makes it possible to trace the stages of interaction of Cur-loaded NP with cultured cells and their localization in cell organelles. With this approach, nanoscale dynamics of drug distribution and stability is observed over time. Conclusions. The main conclusion is that for unstable in the aquatic environment drugs such as Cur, it is necessary to use the most hydrophobic nanostructures without traces of water, which include the nuclei of Pluronic® micelles. This method makes it possible to use other poorly water-soluble drugs. A promising area of nanomedicine is the creation of complex bio-compatible nanomaterials based on several active drugs that reduce the toxicity of preparations to normal cells.


2021 ◽  
Vol 22 (15) ◽  
pp. 8348
Author(s):  
Chunxin Wang ◽  
Bo Cui ◽  
Yan Wang ◽  
Mengjie Wang ◽  
Zhanghua Zeng ◽  
...  

Efficient and safe nanopesticides play an important role in pest control due to enhancing target efficiency and reducing undesirable side effects, which has become a hot spot in pesticide formulation research. However, the preparation methods of nanopesticides are facing critical challenges including low productivity, uneven particle size and batch differences. Here, we successfully developed a novel, versatile and tunable strategy for preparing buprofezin nanoparticles with tunable size via anodic aluminum oxide (AAO) template-assisted method, which exhibited better reproducibility and homogeneity comparing with the traditional method. The storage stability of nanoparticles at different temperatures was evaluated, and the release properties were also determined to evaluate the performance of nanoparticles. Moreover, the present method is further demonstrated to be easily applicable for insoluble drugs and be extended for the study of the physicochemical properties of drug particles with different sizes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1049
Author(s):  
Matthew Lam ◽  
Nour Nashed ◽  
Ali Nokhodchi

The Liqui-Mass technology (also known as Liqui-Pellet technology) has shown promising results in terms of enhancing the drug release rate of water insoluble drugs in a simplistic approach. However, there is no current study on sustained-release formulation using the Liqui-Mass technology. In this study, an attempt was made to produce a sustained-release Liqui-Tablet for the first time using a matrix-based approach. The non-volatile co-solvent used in the investigation included Tween 80, Tween 20 and Kolliphor EL. The production of sustained-release propranolol hydrochloride Liqui-Tablet was successful, and data from the saturation solubility test and dissolution test did not show much difference among the mentioned non-volatile co-solvent. The best Liqui-Tablet formulation took 24 h for drug release to reach at around 100%. There seemed to be a synergistic retarding drug release effect when a non-volatile co-solvent and Eudragit RS PO were used together. The increase of Eudragit RS PO concentration increased the retardant effect. Kinetic drug release analysis suggests that the best formulation followed the Higuchi model. The flowability of pre-compressed Liqui-Tablet pellets had no issues and its size distribution was narrow. Liqui-Tablet was generally robust and most formulations passed the friability test. The study revealed that Liqui-Mass technology can be employed to sustain drug release.


Author(s):  
Devika Tripathi ◽  
Nandini Chaudhary ◽  
Dinesh Kumar Sharma ◽  
Jagannath Sahoo

Ketoprofen used as a Non-steroidal anti-inflammatory drug selected as a poorly water-soluble model drug. Due to the poorly soluble nature of Ketoprofen liberate reduced bioavailability. Hydrotropic solubilization technique is a promising technique used to improve the solubility of water-insoluble drugs. In this investigation, 2M sodium salicylate has been employed in the titrimetric estimation of Ketoprofen and shows synergistic enhancement in the solubility of Ketoprofen by many folds as compared to the distilled water. It excluded the use of various organic solvent like ethanol; methanol and chloroform widely utilized in the titrimetric estimation of various poorly soluble drugs but due to the higher cost, volatility, toxicities lead to environmental pollution hence are the cons of it. The proposed method is new, simple, precise, and inexpensive. The results of the analysis have been validated statistically. The mean % recoveries were found to be close to 100, indicating the accuracy of the proposed method. Low values of standard deviation, % coefficient of variation, and standard error further proved the reproducibility and precision of the proposed method.


2021 ◽  
pp. 088532822110122
Author(s):  
Esmaeil Salimi ◽  
Mohammad Jafar Molaei

This study aimed to provide a new drug delivery system for hydrophobic compounds. Dexamethasone (DEX) was employed as a hydrophobic model drug, which incorporated into the network of hydroxyapatite (HA)/Cyclodextrin (β-CD) nanocomposite. Phase analysis, chemical bonding, morphology, and drug release was evaluated using XRD, FTIR, FESEM, and UV-vis spectroscopy, respectively. XRD patterns showed the formation of the crystalline structure and FTIR analysis showed the chemical bonding between organic and inorganic phases. FESEM images accompanied by EDX analysis confirmed the presence of HA nano-flakes. Release of DEX loaded β-CD/HA was measured to be around 4.6% and 18.7% in pH5.3 and pH 7.4, respectively. In conclusion, the prepared system could be a potential pH sensitive carrier for sustainable release of water-insoluble drugs.


2021 ◽  
Vol 11 (1-s) ◽  
pp. 200-206
Author(s):  
Ashwin Bhanudas Kuchekar ◽  
Ashwini Gawade ◽  
Sanjay Boldhane

Drug development plays an important role in patient safety and effectiveness. The therapeutic suitability of a new drug depends on the solubility. The solubility of the sparingly soluble drug remains a problem in identifying new active compounds. Solubility plays an important role in achieving optimal drug concentration. Low solubility is not only a concern for the production of formulations, but also an obstacle from the outset when identifying active chemicals for therapeutic purposes. Due to its simplicity in terms of ease of administration and economy, the oral route is the preferred route of drug administration over other routes. Effective aqueous solubility is the first prerequisite for oral medication, since low solubility has poor absorption and bioavailability and unpredictable toxicity of the gastrointestinal mucosa. To avoid these crises, different methodologies are used to improve the solubility and bioavailability of poorly soluble drugs, and hydrotropic solubilization is one of them. Hydrotropic agents have the potential to improve the solubility of water-insoluble drugs. In this review, we try to address hydrotropic solubilization methodologies. Keywords: Hydrotropy, Micelles, Solubility, Formulation.


2021 ◽  
Vol 28 ◽  
Author(s):  
Bei He ◽  
Xinxin Liu ◽  
Shi Qi ◽  
Run Zheng ◽  
Minmin Chang ◽  
...  

Background: Cellulose, huge reserves of natural polymers, have been widely applied in pharmaceutical and biomedicine fields due to its good biocompatibility, biodegradability, non-toxicity and excellent mechanical properties. At present, water-resistant metal-based and petroleum-based materials applied in medical field exists obvious problems of poor biocompatibility and high cost. Therefore, water-resistant cellulose-based materials with good biocompatibility and low price will become an attractive alternative. This review aims to summarize the preparation of water-resistant cellulose-based materials and their potential application in pharmaceutical and biomedical in recent years. Methods: Common hydrophobic treatments of cellulose fibers or paper were overviewed. The preparation, properties and applications of water-resistant cellulose-based materials in the pharmaceutical and biomedical fields were summarized. Results: Common hydrophobic treatments of cellulose fibers or paper were divided into chemical modification (graft polymerization, crosslinking, solution casting or dip-coating), physico-chemical surface modifications (plasma treatments, surface patterning, electrostatic spraying and electrowetting) and physical processing (electrostatic spinning, SAS process and 3D EHD printing). These hydrophobically processed cellulose fibers or paper could be prepared into various water-resistant cellulose-based materials and applied in pharmaceutical excipients, drug-loaded amphiphilic micelles, drug-loaded composite fibers, hydrophobic biocomposite film/coatings and paper-based detectors. They presented excellent water resistance and biocompatibility, low cytotoxicity and high drug loading ability, and stable drug release rate, etc., which could be used for water-insoluble drugs carriers, wound dressings, and medical testing equipment. Conclusion: Currently, water-resistant cellulose-based materials were mainly applied in water-insoluble drugs delivery carriers, wound dressing and medical diagnosis and presented great application prospects. However, the contradiction between hydrophobicity and mechanical properties of these reported water-resistant cellulose-based materials limited their wider application in biomedicine such as tissue engineering. In the future, attention will be focused on the higher hydrophobicity of water-resistant cellulose-based materials with excellent mechanical properties. In addition, clinical medical research of water-resistant cellulose-based materials should be strengthened.


Sign in / Sign up

Export Citation Format

Share Document